Stacking faults as quantum wells in nanowires: Density of states, oscillator strength, and radiative efficiency

被引:38
|
作者
Corfdir, P. [1 ]
Hauswald, C. [1 ]
Zettler, J. K. [1 ]
Flissikowski, T. [1 ]
Laehnemann, J. [1 ]
Fernandez-Garrido, S. [1 ]
Geelhaar, L. [1 ]
Grahn, H. T. [1 ]
Brandt, O. [1 ]
机构
[1] Paul Drude Inst Festkorperelekt, D-10117 Berlin, Germany
关键词
OPTICAL-PROPERTIES; GAN; LUMINESCENCE; EXCITONS; LOCALIZATION; LIFETIMES;
D O I
10.1103/PhysRevB.90.195309
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the nature of excitons bound to I-1 basal-plane stacking faults [(I-1, X)] in GaN nanowire ensembles by continuous-wave and time-resolved photoluminescence spectroscopy. Based on the linear increase of the radiative lifetime of these excitons with temperature, they are demonstrated to exhibit a two-dimensional density of states, i.e., a basal-plane stacking fault acts as a quantum well. From the slope of the linear increase, we determine the oscillator strength of the (I-1, X) and show that the value obtained reflects the presence of large internal electrostatic fields across the stacking fault. While the recombination of donor-bound and free excitons in the GaN nanowire ensemble is dominated by nonradiative phenonema already at 10 K, we observe that the (I-1, X) recombines purely radiatively up to 60 K. This finding provides important insight into the nonradiative recombination processes in GaN nanowires. First, the radiative lifetime of about 6 ns measured at 60 K sets an upper limit for the surface recombination velocity of 210 cm s(-1) considering the nanowires mean diameter of 50 nm. Second, the density of nonradiative centers responsible for the fast decay of donor-bound and free excitons cannot be higher than 6 x 10(16) cm(-3). As a consequence, the nonradiative decay of donor-bound excitons in these GaN nanowire ensembles has to occur indirectly via the free exciton state.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Density of states of Cu with stacking faults
    Uchida, Y
    Jimbo, T
    Yamashita, D
    Uda, M
    ADVANCES IN QUANTUM CHEMISTRY, VOL 42: DV-XA FOR ADVANCED NANO MATERIALS AND OTHER INTERESTING TOPICS IN MATERIALS SCIENCE, 2003, 42 : 453 - 463
  • [2] Oscillator strength of trion states in ZnSe-based quantum wells
    Astakhov, GV
    Kochereshko, VP
    Yakovlev, DR
    Ossau, W
    Nürnberger, J
    Faschinger, W
    Landwehr, G
    PHYSICAL REVIEW B, 2000, 62 (15) : 10345 - 10352
  • [3] Stacking faults as quantum wells for excitons in wurtzite GaN
    Rebane, YT
    Shreter, YG
    Albrecht, M
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1997, 164 (01): : 141 - 144
  • [4] A new type of quantum wells:: stacking faults in silicon carbide
    Iwata, H
    Lindefelt, U
    Öberg, S
    Briddon, PR
    MICROELECTRONICS JOURNAL, 2003, 34 (5-8) : 371 - 374
  • [5] Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states
    Leistikow, M. D.
    Johansen, J.
    Kettelarij, A. J.
    Lodahl, P.
    Vos, W. L.
    PHYSICAL REVIEW B, 2009, 79 (04):
  • [6] OSCILLATOR STRENGTH OF EXCITONS IN QUANTUM-WELLS
    MATSUURA, M
    KAMIZATO, T
    SURFACE SCIENCE, 1986, 174 (1-3) : 183 - 187
  • [7] EXCITON OSCILLATOR STRENGTH IN QUANTUM-WELLS - FROM LOCALIZED TO FREE RESONANT STATES
    KAVOKIN, AV
    PHYSICAL REVIEW B, 1994, 50 (11): : 8000 - 8003
  • [8] Broadband infrared photoluminescence in silicon nanowires with high density stacking faults
    Li, Yang
    Liu, Zhihong
    Lu, Xiaoxiang
    Su, Zhihua
    Wang, Yanan
    Liu, Rui
    Wang, Dunwei
    Jian, Jie
    Lee, Joon Hwan
    Wang, Haiyan
    Yu, Qingkai
    Bao, Jiming
    NANOSCALE, 2015, 7 (05) : 1601 - 1605
  • [9] Exciton oscillator strength in GaN/AlGaN quantum wells
    Zamfirescu, M
    Gil, B
    Grandjean, N
    Malpuech, G
    Kavokin, A
    Bigenwald, P
    Massies, J
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2002, 190 (01): : 129 - 133
  • [10] On the oscillator strength in dilute nitride quantum wells on GaAs
    Ryczko, K.
    Sek, G.
    Misiewicz, J.
    Langer, F.
    Hoefling, S.
    Kamp, M.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (12)