Reinforcement learning decoders for fault-tolerant quantum computation

被引:38
|
作者
Sweke, Ryan [1 ]
Kesselring, Markus S. [1 ]
van Nieuwenburg, Evert P. L. [2 ]
Eisert, Jens [1 ,3 ]
机构
[1] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[2] Univ Copenhagen, Niels Bohr Int Acad, DK-2100 Copenhagen, Denmark
[3] Free Univ Berlin, Dept Math & Comp Sci, D-14195 Berlin, Germany
来源
基金
瑞士国家科学基金会;
关键词
quantum error correction; reinforcement learning; fault tolerant quantum computing; ERROR-CORRECTION; LATTICE;
D O I
10.1088/2632-2153/abc609
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Topological error correcting codes, and particularly the surface code, currently provide the most feasible road-map towards large-scale fault-tolerant quantum computation. As such, obtaining fast and flexible decoding algorithms for these codes, within the experimentally realistic and challenging context of faulty syndrome measurements, without requiring any final read-out of the physical qubits, is of critical importance. In this work, we show that the problem of decoding such codes can be naturally reformulated as a process of repeated interactions between a decoding agent and a code environment, to which the machinery of reinforcement learning can be applied to obtain decoding agents. While in principle this framework can be instantiated with environments modelling circuit level noise, we take a first step towards this goal by using deepQ learning to obtain decoding agents for a variety of simplified phenomenological noise models, which yield faulty syndrome measurements without including the propagation of errors which arise in full circuit level noise models.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Fault-tolerant quantum computation
    Shor, PW
    [J]. 37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, : 56 - 65
  • [2] Local fault-tolerant quantum computation
    Svore, KM
    Terhal, BM
    DiVincenzo, DP
    [J]. PHYSICAL REVIEW A, 2005, 72 (02):
  • [3] A Converse for Fault-tolerant Quantum Computation
    Uthirakalyani, G.
    Nayak, Anuj K.
    Chatterjee, Avhishek
    [J]. QUANTUM, 2023, 7
  • [4] Fault-tolerant quantum computation by anyons
    Kitaev, AY
    [J]. ANNALS OF PHYSICS, 2003, 303 (01) : 2 - 30
  • [5] Theory of fault-tolerant quantum computation
    Gottesman, D
    [J]. PHYSICAL REVIEW A, 1998, 57 (01): : 127 - 137
  • [6] Fault-Tolerant Holonomic Quantum Computation
    Oreshkov, Ognyan
    Brun, Todd A.
    Lidar, Daniel A.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (07)
  • [7] Universal fault-tolerant quantum computation using fault-tolerant conversion schemes
    Luo, Lan
    Ma, Zhi
    [J]. NEW JOURNAL OF PHYSICS, 2019, 21 (08)
  • [8] Fault-tolerant quantum computation with local gates
    Gottesman, D
    [J]. JOURNAL OF MODERN OPTICS, 2000, 47 (2-3) : 333 - 345
  • [9] New limits on fault-tolerant quantum computation
    Buhrman, Harry
    Cleve, Richard
    Laurent, Monique
    Linden, Noah
    Schrijver, Alexander
    Unger, Falk
    [J]. 47TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2006, : 411 - 419
  • [10] Fibonacci scheme for fault-tolerant quantum computation
    Aliferis, Panos
    Preskill, John
    [J]. PHYSICAL REVIEW A, 2009, 79 (01):