Shear strength testing of basalt-, hybrid-, and nano-hybrid fibre-reinforced polymer bars

被引:3
|
作者
Protchenko, K. [1 ]
Zayoud, F. [1 ]
Urbanski, M. [1 ]
机构
[1] Warsaw Univ Technol, Fac Civil Engn, Al Armii Ludowej 16, PL-00637 Warsaw, Poland
关键词
Hybrid FRP bars; Fibre-Reinforced Polymers (FRP) bars; nHFRP bars; shear testing; composite bars; FRP BARS; CONCRETE; BEHAVIOR; ELEMENTS; TENSILE;
D O I
10.24425/ace.2021.137171
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Over the past decades, using of sustainable materials in construction is a challenging issue, thus Fibre Reinforced Polymers (FRP) took the attention of civil and structural engineers for its lightweight and high-strength properties. The paper describes the results of the shear strength testing of three different types of bars: (i) basalt-FRP (BFRP), (ii) hybrid FRP with carbon and basalt fibres (HFRP) and (iii) nano-hybrid FRP (nHFRP), with modification of the epoxy matrix of the bar. The hybridization of carbon and basalt fibres lead to more cost-efficient alternative than Carbon FRP (CFRP) bars and more sustainable alternative than Basalt FRP (BFRP) bars. The BFRP, HFRP and nHFRP bars with different diameters ranging from O4 to O18 mm were subjected to shear strength testing in order to investigate mechanical properties and the destruction mechanism of the bars. Obtained results display a slight downward trend as the bar diameter increase, which is the most noticeable for HFRP bars. In most of the cases, BFRP bars were characterized by greater shear deformation and less shear strength compared to HFRP and nHFRP bars. Performed testing may contribute to comprehensive understanding of the mechanical behavior of those types of FRP bars.
引用
收藏
页码:323 / 336
页数:14
相关论文
共 50 条
  • [1] Tensile and Shear Testing of Basalt Fiber Reinforced Polymer (BFRP) and Hybrid Basalt/Carbon Fiber Reinforced Polymer (HFRP) Bars
    Protchenko, Kostiantyn
    Zayoud, Fares
    Urbanski, Marek
    Szmigiera, Elzbieta
    MATERIALS, 2020, 13 (24) : 1 - 16
  • [2] Optimizing Hybrid Fibre-Reinforced Polymer Bars Design: A Machine Learning Approach
    Manan, Aneel
    Zhang, Pu
    Ahmad, Shoaib
    Ahmad, Jawad
    JOURNAL OF POLYMER MATERIALS, 2024, 41 (01): : 15 - 44
  • [3] Strength and deformability of concrete structures reinforced with fibre-reinforced polymer bars
    Gizdatullin, G. A.
    Khusainov, R. R.
    Khozin, V. G.
    Krasinikova, N. M.
    MAGAZINE OF CIVIL ENGINEERING, 2016, 62 (02): : 32 - 41
  • [4] Specifics of testing and fracture behavior of fibre-reinforced polymer bars
    Gizdatullin, A. R.
    Khozin, V. G.
    Kuklin, A. N.
    Khusnutdinov, A. M.
    MAGAZINE OF CIVIL ENGINEERING, 2014, 47 (03): : 40 - 47
  • [5] Bond behaviour of recycled aggregate concrete with basalt fibre-reinforced polymer bars
    Xiong, Zhe
    Wei, Wei
    Liu, Feng
    Cui, Chuying
    Li, Lijuan
    Zou, Rui
    Zeng, Yin
    COMPOSITE STRUCTURES, 2021, 256
  • [6] Flexural behaviour of semi-precast slabs of fibre-reinforced concrete reinforced with prestressed basalt fibre-reinforced polymer and steel bars
    Mahmoud, Maha R., I
    Wang, Xin
    Bai, Xingyu
    Altayeb, Mohamedelmujtaba
    Liu, Shui
    Moussa, Amr M. A.
    ADVANCES IN STRUCTURAL ENGINEERING, 2024, 27 (15) : 2609 - 2625
  • [7] Fatigue behaviour of sea sand concrete beams reinforced with basalt fibre-reinforced polymer bars
    Li, Lijuan
    Hou, Bin
    Lu, Zhongyu
    Liu, Feng
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 179 : 160 - 171
  • [8] Study of Mechanical Properties and Thermal Conductivity of Carbon and Basalt Fibre-Reinforced Hybrid Polymer Composites
    Rao, V. Durga Prasada
    Sarabhayya, N. V. N.
    Balakrishna, A.
    ADVANCES IN UNCONVENTIONAL MACHINING AND COMPOSITES, AIMTDR 2018, 2020, : 725 - 738
  • [9] Bond strength of glass fibre-reinforced polymer bars in unconfined concrete
    Choi, Dong-Uk
    Chun, Sung-Chul
    Ha, Sang-Su
    ENGINEERING STRUCTURES, 2012, 34 : 303 - 313
  • [10] Bond strength of fibre-reinforced polymer bars in engineered cementitious composites
    Hossain, Khandaker M. A.
    Alam, Shah
    Anwar, Muhammed S.
    Julkarnine, Khandaker M. Y.
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-CONSTRUCTION MATERIALS, 2020, 173 (01) : 15 - 27