This work investigated quality properties of pellets of raw cassava rhizome (P-RC), pellets of pelletized cassava rhizome followed by torrefaction (T-CP), and pellets of torrefied cassava rhizome followed by pelletizing (P-TC). Torrefaction was conducted at temperatures of 230, 250, and 280 degrees C for 30 min. Pyrolysis characteristics of T-CP and P-TC at torrefied temperatures of 230 and 250 degrees C were studied using thermogravimetric analysis. It was found that at the similar torrefied temperature, P-TC had a higher bulk density, energy density, and pellet durability than that of T-CP and P-RC while T-CP had a higher HHV and moisture absorption than P-TC and P-RC. The bulk density of P-TC was 1.13-1.19 and 1.33-1.52 times higher than that of P-RC and T-CP, respectively. The HHV of T-CP was 1.07 and 1.29 times higher than P-TC and P-RC, respectively. The energy density of P-TC was 1.24-1.56 and 1.20-1.41 times higher than that of P-RC and T-CP. In terms of Pellet Fuel Institute (PFI) standard, the durability index of P-RC, P-TC, and T-CP at torrefied temperatures of 230 and 250 degrees C was acceptable. However, dramatically low and unacceptable durability index was found in case of T-CP at torrefied temperature of 280 degrees C. The moisture absorption of P-TC was lower than that of P-RC and T-CP. Finally, T-CP had a lower pyrolysis temperature and had a much lower solid yield than that of P-TC. Variation of pyrolysis characteristics indicated the difference in chemical composition between T-CP and P-TC.