Autonomous Vision-Based Aerial Grasping for Rotorcraft Unmanned Aerial Vehicles

被引:14
|
作者
Lin, Lishan [1 ]
Yang, Yuji [1 ]
Cheng, Hui [1 ]
Chen, Xuechen [1 ]
机构
[1] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
关键词
autonomous aerial grasping; unmanned aerial vehicle; visual perception; localization; MANIPULATION;
D O I
10.3390/s19153410
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Autonomous vision-based aerial grasping is an essential and challenging task for aerial manipulation missions. In this paper, we propose a vision-based aerial grasping system for a Rotorcraft Unmanned Aerial Vehicle (UAV) to grasp a target object. The UAV system is equipped with a monocular camera, a 3-DOF robotic arm with a gripper and a Jetson TK1 computer. Efficient and reliable visual detectors and control laws are crucial for autonomous aerial grasping using limited onboard sensing and computational capabilities. To detect and track the target object in real time, an efficient proposal algorithm is presented to reliably estimate the region of interest (ROI), then a correlation filter-based classifier is developed to track the detected object. Moreover, a support vector regression (SVR)-based grasping position detector is proposed to improve the grasp success rate with high computational efficiency. Using the estimated grasping position and the UAV?Aos states, novel control laws of the UAV and the robotic arm are proposed to perform aerial grasping. Extensive simulations and outdoor flight experiments have been implemented. The experimental results illustrate that the proposed vision-based aerial grasping system can autonomously and reliably grasp the target object while working entirely onboard.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] An Autonomous Vision-Based Target Tracking System for Rotorcraft Unmanned Aerial Vehicles
    Cheng, Hui
    Lin, Lishan
    Zheng, Zhuoqi
    Guan, Yuwei
    Liu, Zhongchang
    [J]. 2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 1732 - 1738
  • [2] Vision-based Autonomous Landing for Rotorcraft Unmanned Aerial Vehicle
    Bu, Chaovan
    Ai, Yunfeng
    Du, Huajun
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON VEHICULAR ELECTRONICS AND SAFETY (ICVES), 2016, : 77 - 82
  • [3] Vision-based Autonomous Landing of Unmanned Aerial Vehicles
    Hu Jiaxin
    Guo Yanning
    Feng Zhen
    Guo Yuqing
    [J]. 2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 3464 - 3469
  • [4] Vision-Based Autonomous Object Tracking for Unmanned Aerial Vehicles
    Apon, Mateusz
    Nikonowicz, Arkadiusz
    Ambroziak, Leszek
    Kondratiuk, Miroslaw
    Burzynski, Piotr
    Kuczynski, Adam
    [J]. MECHATRONICS SYSTEMS AND MATERIALS 2018, 2018, 2029
  • [5] An Improved Vision-Based Algorithm for Unmanned Aerial Vehicles Autonomous Landing
    Zhao, Yunji
    Pei, Hailong
    [J]. 2012 INTERNATIONAL CONFERENCE ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING (ICMPBE2012), 2012, 33 : 935 - 941
  • [6] An Improved Vision-Based Algorithm for Unmanned Aerial Vehicles Autonomous Landing
    Zhao, Yunji
    Pei, Hailong
    Wang, Shidi
    [J]. 2010 INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT (CCCM2010), VOL II, 2010, : 84 - 87
  • [7] A vision-based system for autonomous vertical landing of unmanned aerial vehicles
    Wubben, Jamie
    Fabra, Francisco
    Calafate, Carlos T.
    Krzeszowski, Tomasz
    Marquez-Barja, Johann M.
    Cano, Juan-Carlos
    Manzoni, Pietro
    [J]. 2019 IEEE/ACM 23RD INTERNATIONAL SYMPOSIUM ON DISTRIBUTED SIMULATION AND REAL TIME APPLICATIONS (DS-RT), 2019, : 188 - 194
  • [8] Vision-based navigation of unmanned aerial vehicles
    Courbon, Jonathan
    Mezouar, Youcef
    Guenard, Nicolas
    Martinet, Philippe
    [J]. CONTROL ENGINEERING PRACTICE, 2010, 18 (07) : 789 - 799
  • [9] Vision-Based Autonomous Landing for Unmanned Aerial and Ground Vehicles Cooperative Systems
    Niu, Guanchong
    Yang, Qingkai
    Gao, Yunfan
    Pun, Man-On
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (03) : 6234 - 6241
  • [10] A hierarchical vision-based localization of rotor unmanned aerial vehicles for autonomous landing
    Yuan, Haiwen
    Xiao, Changshi
    Xiu, Supu
    Zhan, Wenqiang
    Ye, Zhenyi
    Zhang, Fan
    Zhou, Chunhui
    Wen, Yuanqiao
    Li, Qiliang
    [J]. INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2018, 14 (09):