On the total coloring of graphs embeddable in surfaces

被引:6
|
作者
Zhao, Y [1 ]
机构
[1] Benedictine Coll, Dept Math & Comp Sci, Columbia, SC 29204 USA
关键词
D O I
10.1112/S0024610799007668
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper shows that any graph G with the maximum degree Delta>(*) over bar * (G) greater than or equal to 8, which is embeddable in a surface Sigma of Euler characteristic chi>(*) over bar *(Sigma) greater than or equal to 0, is totally (Delta>(*) over bar * (G) + 2)-colorable. In general, it is shown that any graph G which is embeddable in a surface Sigma and satisfies the maximum degree Delta>(*) over bar * (G) greater than or equal to (20/9)(3 - chi>(*) over bar *(Sigma)) + 1 is totally (Delta>(*) over bar * (G) + 2)-colorable.
引用
收藏
页码:333 / 343
页数:11
相关论文
共 50 条
  • [1] Linear coloring of graphs embeddable in a surface of nonnegative characteristic
    WANG WeiFan& LI ChaoDepartment of Mathematics
    [J]. Science China Mathematics, 2009, (05) : 991 - 1003
  • [2] Linear coloring of graphs embeddable in a surface of nonnegative characteristic
    WeiFan Wang
    Chao Li
    [J]. Science in China Series A: Mathematics, 2009, 52 : 991 - 1003
  • [3] Linear coloring of graphs embeddable in a surface of nonnegative characteristic
    WANG WeiFan LI ChaoDepartment of Mathematics Zhejiang Normal University Jinhua China
    [J]. ScienceinChina(SeriesA:Mathematics)., 2009, 52 (05) - 1003
  • [4] Linear coloring of graphs embeddable in a surface of nonnegative characteristic
    Wang WeiFan
    Li Chao
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (05): : 991 - 1003
  • [5] On the linear arboricity of graphs embeddable in surfaces
    Wang, Huijuan
    Wu, Jianliang
    Liu, Bin
    Chen, Hongyu
    [J]. INFORMATION PROCESSING LETTERS, 2014, 114 (09) : 475 - 479
  • [6] Total coloring of graphs embedded in surfaces of nonnegative Euler characteristic
    HuiJuan Wang
    Bin Liu
    JianLiang Wu
    Bing Wang
    [J]. Science China Mathematics, 2014, 57 : 211 - 220
  • [7] Total coloring of graphs embedded in surfaces of nonnegative Euler characteristic
    Wang HuiJuan
    Liu Bin
    Wu JianLiang
    Wang Bing
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (01) : 211 - 220
  • [8] Total coloring of graphs embedded in surfaces of nonnegative Euler characteristic
    WANG HuiJuan
    LIU Bin
    WU JianLiang
    WANG Bing
    [J]. Science China Mathematics, 2014, 57 (01) : 211 - 220
  • [9] Improper coloring of graphs on surfaces
    Choi, Ilkyoo
    Esperet, Louis
    [J]. JOURNAL OF GRAPH THEORY, 2019, 91 (01) : 16 - 34
  • [10] ON THE TOTAL COLORING OF PLANAR GRAPHS
    BORODIN, OV
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 394 : 180 - 185