Quantifying the impacts of climate change and vegetation change on decreased runoff in china's yellow river basin

被引:14
|
作者
Wang, D. L. [1 ,2 ,3 ]
Feng, H. M. [4 ]
Zhang, B. Z. [2 ]
Wei, Z. [2 ]
Tian, Y. L. [5 ]
机构
[1] Taiyuan Inst Technol, 38 Xinlan Rd, Taiyuan 030008, Peoples R China
[2] China Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, 20 Chegongzhuang West Rd, Beijing 100038, Peoples R China
[3] Ningxia Res Inst Water Resources, 157 Beijing West Rd, Yinchuan 750021, Ningxia, Peoples R China
[4] Shanxi Agr Univ, Coll Urban & Rural Construct, 1 Daxue Rd, Taigu 030801, Peoples R China
[5] Chinese Acad Geol Sci, Inst Hydrogeol & Environm Geol, 258 Zhonghua North St, Shijiazhuang 050800, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Vegetation change; Climate change; Runoff change; Yellow River Basin; WATER YIELD; EVAPOTRANSPIRATION; EVAPORATION; STREAMFLOW; AFFORESTATION; VARIABILITY; FRACTION; MODEL;
D O I
10.1016/j.ecohyd.2021.10.002
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
In arid-semiarid regions, understanding the mechanisms by which vegetation change and climate change affect the regional water balance is important for the development of effective measures and for guiding vegetation restoration and adapting to climate change. In this study, we utilize the Budyko equation and dual-source evapotranspiration models to assess the impacts of vegetation change and climate change on the runoff in China's Yellow River Basin (YRB). The aims of the study are as follows: (1) Apply a well-formulated Budyko framework-dual-source evapotranspiration model to explore the eco-hydrological controls of the regional water balance. (2) Precisely assess the contribution of vegetation change, precipitation change, temperature change, wind speed change, the relative humidity change, and radiation change to the decreased runoff. The results indicated that vegetation change was the dominant factor affecting the reduction of runoff in the upper reaches above Lanzhou, Toudaoguai, Longmen, Sanmenxia, and Huayuankou, and the contributions were -80.4%, -58.4%, -52.5%, -46.9%, -39.7%, and -41.6% respectively. In Lanzhou, Taodaoguai, Longmen, and Sanmenxia, the precipitation change was the second affecting factor, and the contributions were -20.8%, -31.6%, -30.0%, and -35.2%, respectively. In Huayuankou and Lijin, the relative humidity change was the second affecting factor, and the contributions were -26.8% and -35.0%, respectively. (3) As the vegetation coverage or the leaf area index (LAI) increased, the runoff decreased linearly. (C) 2021 European Regional Centre for Ecohydrology of the Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:310 / 322
页数:13
相关论文
共 50 条
  • [1] Impacts of Climate Change on Runoff in the Heihe River Basin, China
    Liu, Qin
    Cheng, Peng
    Lyu, Meixia
    Yan, Xinyang
    Xiao, Qingping
    Li, Xiaoqin
    Wang, Lei
    Bao, Lili
    ATMOSPHERE, 2024, 15 (05)
  • [2] Impacts of climate change on runoff in the Yellow River
    Lyu, Jiqiang
    Zhang Zezhong
    Shen, Bing
    JOURNAL AMERICAN WATER WORKS ASSOCIATION, 2014, 106 (05): : E225 - E232
  • [3] Potential effects of climate change on runoff in the Yellow River basin of China
    Zhang, G.-H.
    Fu, S.-H.
    Fang, W.-H.
    Imura, H.
    Zhang, X.-C.
    TRANSACTIONS OF THE ASABE, 2007, 50 (03) : 911 - 918
  • [4] Impacts of Climate Change on Natural Runoff in the Yellow River Basin of China during 1961-2020
    Han, Zuoqiang
    Zuo, Qiting
    Wang, Chunqing
    Gan, Rong
    WATER, 2023, 15 (05)
  • [5] Impacts of climate change/variability on the streamflow in the Yellow River Basin, China
    Liu, Qiang
    Cui, Baoshan
    ECOLOGICAL MODELLING, 2011, 222 (02) : 268 - 274
  • [6] Quantifying the impacts of climate change and land use/cover change on runoff in the lower Connecticut River Basin
    Wang, Hui
    Stephenson, Scott R.
    HYDROLOGICAL PROCESSES, 2018, 32 (09) : 1301 - 1312
  • [7] Impacts of climate change and LULC change on runoff in the Jinsha River Basin
    Chen, Qihui
    Chen, Hua
    Zhang, Jun
    Hou, Yukun
    Shen, Mingxi
    Chen, Jie
    Xu, Chongyu
    JOURNAL OF GEOGRAPHICAL SCIENCES, 2020, 30 (01) : 85 - 102
  • [8] Impacts of climate change and LULC change on runoff in the Jinsha River Basin
    Qihui Chen
    Hua Chen
    Jun Zhang
    Yukun Hou
    Mingxi Shen
    Jie Chen
    Chongyu Xu
    Journal of Geographical Sciences, 2020, 30 : 85 - 102
  • [9] Impacts of climate change and LULC change on runoff in the Jinsha River Basin
    CHEN Qihui
    CHEN Hua
    ZHANG Jun
    HOU Yukun
    SHEN Mingxi
    CHEN Jie
    XU Chongyu
    Journal of Geographical Sciences, 2020, 30 (01) : 85 - 102
  • [10] Quantifying the impacts of climate change and human activities on seasonal runoff in the Yongding River basin
    Du, Yong
    Bao, Aimei
    Zhang, Ting
    Ding, Wei
    ECOLOGICAL INDICATORS, 2023, 154