Travelling Turing patterns with anomalous diffusion

被引:17
|
作者
Varea, C [1 ]
Barrio, RA [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico
关键词
D O I
10.1088/0953-8984/16/44/006
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We investigate the formation of Turing patterns (arising from a diffusion driven instability) when diffusion is anomalous. We analyse a model that contains the important features of Turing systems and that has been extensively used in the past to model interesting biological patterns. We concentrate on the case of asymmetric anomalous diffusion, and we cast a version of the model, suitable for numerical calculations, using a discrete version of the fractional derivatives defining the anomalous diffusion operator. The results are interesting in the sense that patterns are no longer stationary but acquire a velocity that depends on the exponent of the fractional derivatives. Extensive numerical calculations in one and two dimensions exhibit many of the features predicted by the analysis of the equations.
引用
收藏
页码:S5081 / S5090
页数:10
相关论文
共 50 条
  • [1] Self-similar Turing patterns: An anomalous diffusion consequence
    Hernandez, D.
    Herrera-Hernandez, E. C.
    Nunez-Lopez, M.
    Hernandez-Coronado, H.
    [J]. PHYSICAL REVIEW E, 2017, 95 (02)
  • [2] Travelling-stripe forcing of Turing patterns
    Sagués, F
    Míguez, DG
    Nicola, EM
    Muñuzuri, AP
    Casademunt, J
    Kramer, L
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2004, 199 (1-2) : 235 - 242
  • [3] Boundary conditions influence on Turing patterns under anomalous diffusion: A numerical exploration
    Lopez, Alejandro Valdes
    Hernandez, D.
    Aguilar-Madera, Carlos G.
    Martinez, Roxana Cortes
    Herrera-Hernandez, E. C.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2024, 470
  • [4] Turing instability of anomalous reaction-anomalous diffusion systems
    Nec, Y.
    Nepomnyashchy, A. A.
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2008, 19 : 329 - 349
  • [5] Turing Patterns in a Reaction-Diffusion System
    WU Yan-Ning WANG Ping-Jian HOU Chun-Ju LIU Chang-Song ZHU Zhen-Gang Key Laboratory of Material Physics
    [J]. Communications in Theoretical Physics, 2006, 45 (04) : 761 - 764
  • [6] Turing patterns in a reaction-diffusion system
    Wu, YN
    Wang, PJ
    Hou, CJ
    Liu, CS
    Zhu, ZG
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (04) : 761 - 764
  • [7] Turing patterns and spatiotemporal patterns in a tritrophic food chain model with diffusion
    Fu, Shengmao
    He, Xue
    Zhang, Lina
    Wen, Zijuan
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 59
  • [8] Analysis of Turing patterns by stochastic reaction diffusion systems
    Ishikawa, M
    Miyajima, K
    Tasaka, T
    [J]. SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5, 2002, : 2897 - 2901
  • [9] The Relevance of Cross-diffusion in the Formation of Turing Patterns
    Peacock-Lopez, Enrique
    [J]. NONLINEAR DYNAMICS PSYCHOLOGY AND LIFE SCIENCES, 2011, 15 (01) : 1 - 10
  • [10] Subcritical Turing patterns in hyperbolic models with cross–diffusion
    C. Currò
    G. Valenti
    [J]. Ricerche di Matematica, 2022, 71 : 147 - 167