Bifurcations of links of periodic orbits in Mathieu systems

被引:0
|
作者
Campos, B [1 ]
Alfaro, JM
机构
[1] Univ Jaume 1, Dept Matemat, Castellon de La Plana, Spain
[2] Univ Valencia, Fac Matemat, Dept Matemat Aplicada, E-46003 Valencia, Spain
来源
PROGRESS OF THEORETICAL PHYSICS | 2000年 / 104卷 / 01期
关键词
D O I
10.1143/PTP.104.1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the nonlinear dissipative Mathieu equation x + delta(x) over dot + omega(2)(1 + epsilon cos t)x + gx(3) = 0, g, delta > 0 We prove that orbits escape from infinity, and that therefore the sphere S-3 can be considered as its phase space. If the parameter delta is large enough, the system is non-singular Morse-Smale, and its periodic orbits define a Hogf link. As delta decreases, the system undergoes some bifurcations that we describe geometrically. We relate the bifurcation orbits to periodic orbits continued from the linear Mathieu equation.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [1] BIFURCATIONS OF PERIODIC ORBITS AND INTEGRABILITY OF DYNAMICAL SYSTEMS
    Kasperczuk, Stanislaw P.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (10): : 3345 - 3349
  • [2] RESONANT BIFURCATIONS OF PERIODIC ORBITS IN HIGH DIMENSIONAL SYSTEMS
    Xiang, Guanghui
    Hu, Zhaoping
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (07): : 2417 - 2422
  • [3] Periodic orbits and bifurcations in discontinuous systems with a hyperbolic boundary
    Li L.
    Luo A.C.J.
    [J]. International Journal of Dynamics and Control, 2017, 5 (3) : 513 - 529
  • [4] GLOBAL BIFURCATIONS OF PERIODIC ORBITS
    ALEXANDER, JC
    YORKE, JA
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1978, 100 (02) : 263 - 292
  • [5] Bifurcations of links of periodic orbits in non-singular Morse-Smale systems on S-3
    Campos, B
    Alfaro, JM
    Vindel, P
    [J]. NONLINEARITY, 1997, 10 (05) : 1339 - 1355
  • [6] Bifurcations of links of periodic orbits in non-singular systems with two rotational symmetries on S-3
    Campos, B
    Alfaro, JM
    Vindel, P
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1997, 6 (02) : 163 - 176
  • [7] Bifurcations of symmetric periodic orbits near equilibrium in reversible systems
    Shih, CW
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (03): : 569 - 584
  • [8] Continuation of Bifurcations of Periodic Orbits for Large-Scale Systems
    Net, M.
    Sanchez, J.
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2015, 14 (02): : 674 - 698
  • [9] BIFURCATIONS OF TRIPLE-PERIODIC ORBITS
    CONTOPOULOS, G
    MICHAELIDIS, P
    [J]. CELESTIAL MECHANICS, 1980, 22 (04): : 403 - 413
  • [10] Bifurcations and periodic orbits in chaotic maps
    Stefanski, K
    [J]. OPEN SYSTEMS & INFORMATION DYNAMICS, 2001, 8 (01): : 89 - 102