Generalized von Karman equations

被引:2
|
作者
Ciarlet, PG
Gratie, L
机构
[1] Univ Paris 06, Anal Numer Lab, F-75005 Paris, France
[2] Univ Dunarea de Jos, Fac Ingn Braila, Braila 6100, Romania
关键词
D O I
10.1016/S0764-4442(00)01639-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a previous work, the first author has identified three-dimensional boundary conditions "of von Karman's type" that lead, through a formal asymptotic analysis of the three-dimensional solution, to the classical von Karman equations, when they are applied to the entire lateral face of a nonlinearly elastic plate. In this Note, we consider the more general situation where only a portion of the lateral face is subjected to boundary conditions of von von Karman's type, while the remaining portion is subjected to boundary conditions of free edge. We then show that the asymptotic analysis of the three-dimensional solution still leads in this case to a two-dimensional boundary value problem that is analogous to the von Karman equations. In particular, the boundary conditions for the Airy function can still be determined solely from the data. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:329 / 335
页数:7
相关论文
共 50 条
  • [1] Generalized von Karman equations
    Ciarlet, PG
    Gratie, L
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (03): : 263 - 279
  • [2] On the generalized von Karman equations and their approximation
    Ciarlet, Philippe G.
    Gratie, Liliana
    Kesavan, Srinivasan
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (04): : 617 - 633
  • [3] From the classical to the generalized von Karman and Marguerre-von Karman equations
    Ciarlet, PG
    Gratie, L
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 190 (1-2) : 470 - 486
  • [4] An existence theorem for generalized von Karman equations
    Ciarlet, PG
    Gratie, L
    Sabu, N
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (07): : 669 - 676
  • [5] An existence theorem for generalized von Karman equations
    Ciarlet, PG
    Gratie, L
    Sabu, N
    [J]. JOURNAL OF ELASTICITY, 2001, 62 (03) : 239 - 248
  • [6] Numerical analysis of the generalized von Karman equations
    Ciarlet, PG
    Gratie, L
    Kesavan, S
    [J]. COMPTES RENDUS MATHEMATIQUE, 2005, 341 (11) : 695 - 699
  • [7] On the existence of solutions to the generalized Marguerre-von Karman equations
    Ciarlet, PG
    Gratie, L
    [J]. MATHEMATICS AND MECHANICS OF SOLIDS, 2006, 11 (01) : 83 - 100
  • [8] Von Karman Equations
    Fattorusso, Luisa
    Tarsia, Antonio
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 286 - +
  • [9] Global well posedness of the dynamic von Karman equations for generalized solutions
    Bohm, M
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (03) : 339 - 351
  • [10] On nonstationary von Karman equations
    Bock, I
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 (10): : 559 - 571