Tuning of PID Parameters Using Artificial Neural Network

被引:2
|
作者
Nisha [1 ]
Mittal, Avneesh [3 ]
Sharma, O. P. [4 ]
Dhyani, Nitu [2 ]
Sharma, Vijay [2 ]
Kapoor, Avinashi [1 ]
Saxena, T. K. [2 ]
机构
[1] Univ Delhi, Dept Elect, South Campus, New Delhi 110021, India
[2] Natl Phys Lab, New Delhi 110021, India
[3] Univ Delhi, Bhaskaracharya Coll Appl Sci, Dwarka 110075, India
[4] Univ Delhi, Kirori Mal Coll, Delhi 110007, India
关键词
PID; Artificial Neural Network (ANN); Temperature Controller; Adaptive Control;
D O I
10.1109/MSPCT.2009.5164237
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Tuning of the PID controller in a varying environment is extremely difficult. For this purpose one has to use the adaptive PID controller. In the present paper a novel method for fast tuning of the PID controller has been presented and implemented on designed and developed hardware around the 89C51 microcontroller, Varying environment in the very old existing MLW-MK70, former East German bath has been created with the help of two microcontrollers. The artificial neural network (ANN) has been used to tune the PID parameters. The software has been written in Visual BASIC5.0 language.
引用
收藏
页码:309 / +
页数:3
相关论文
共 50 条
  • [1] An Evolutionary Approach for Tuning Artificial Neural Network Parameters
    Almeida, Leandro M.
    Ludermir, Teresa B.
    [J]. HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, 2008, 5271 : 156 - 163
  • [2] Differential Evolution Optimal Parameters Tuning with Artificial Neural Network
    Centeno-Telleria, Manu
    Zulueta, Ekaitz
    Fernandez-Gamiz, Unai
    Teso-Fz-Betono, Daniel
    Teso-Fz-Betono, Adrian
    [J]. MATHEMATICS, 2021, 9 (04) : 1 - 21
  • [3] A connectionist approach to hydroturbine speed control parameters tuning using artificial neural network
    Garcez, JN
    Garcez, AR
    [J]. 38TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, PROCEEDINGS, VOLS 1 AND 2, 1996, : 641 - 644
  • [4] Tuning the parameters of an artificial neural network using central composite design and genetic algorithm
    Bashiri, M.
    Geranmayeh, A. Farshbaf
    [J]. SCIENTIA IRANICA, 2011, 18 (06) : 1600 - 1608
  • [5] A Novel Tuning approach for MPC parameters based on Artificial Neural Network
    Moumouh, Houssam
    Langlois, Nicolas
    Haddad, Madjid
    [J]. 2019 IEEE 15TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2019, : 1638 - 1643
  • [6] Tuning PID controllers for processes with inverse response using artificial neural networks
    Huang, CT
    Lin, MY
    Huang, MC
    [J]. JOURNAL OF THE CHINESE INSTITUTE OF CHEMICAL ENGINEERS, 1999, 30 (03): : 223 - 232
  • [7] The Research of PMSM RBF Neural Network PID Parameters Self-tuning in Elevator
    Wang Tong-xu
    Ma Hong-yan
    [J]. 2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 3350 - 3354
  • [8] Calculation of PID controller parameters by using a fuzzy neural network
    Lee, CH
    Teng, CC
    [J]. ISA TRANSACTIONS, 2003, 42 (03) : 391 - 400
  • [9] Inversion of fracture parameters by using the artificial neural network
    Dai, HC
    Li, XY
    MacBeth, C
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL I AND II, 1999, : 517 - 523
  • [10] Genetic tuning of PID controllers using a neural network model: A seesaw example
    Wu, CJ
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 1999, 25 (01) : 43 - 59