Big Data Analytics on Large-Scale Scientific Datasets in the INDIGO-DataCloud Project

被引:7
|
作者
Fiore, Sandro [1 ]
Palazzo, Cosimo [1 ]
D'Anca, Alessandro [1 ]
Elia, Donatello [1 ]
Londero, Elisa [2 ]
Knapic, Cristina [2 ]
Monna, Stephen [3 ]
Marcucci, Nicola M. [3 ]
Aguilar, Fernando [4 ]
Plociennik, Marcin [5 ]
De Lucas, Jesus E. Marco [4 ]
Aloisio, Giovanni [6 ]
机构
[1] Euromediterranean Ctr Climate Change Fdn, Lecce, Italy
[2] INAF Trieste Astron Observ OATs, Trieste, Italy
[3] Ist Nazl Geofis & Vulcanol INGV, Rome, Italy
[4] UC CSIC, Inst Fis Cantabria, Santander, Spain
[5] IBCh Pas, PSNC Poznan Supercomp & Networking Ctr, Poznan, Poland
[6] Univ Salento, Euromediterranean Ctr Climate Change Fdn, Lecce, Italy
关键词
Workflow; big data; scientific use case; ensemble analysis;
D O I
10.1145/3075564.3078884
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the context of the EU H2020 INDIGO-DataCloud project several use case on large scale scientific data analysis regarding different research communities have been implemented. All of them require the availability of large amount of data related to either output of simulations or observed data from sensors and need scientific (big) data solutions to run data analysis experiments. More specifically, the paper presents the case studies related to the following research communities: (i) the European Multidisciplinary Seafloor and water column Observatory (INGV-EMSO), (ii) the Large Binocular Telescope, (iii) LifeWatch, and (iv) the European Network for Earth System Modelling (ENES).
引用
收藏
页码:343 / 348
页数:6
相关论文
共 50 条
  • [1] Two-level dynamic workflow orchestration in the INDIGO DataCloud for large-scale, climate change data analytics experiments
    Plociennik, Marcin
    Fiore, Sandro
    Donvito, Giacinto
    Owsiak, Michal
    Fargetta, Marco
    Barbera, Roberto
    Bruno, Riccardo
    Giorgio, Emidio
    Williams, Dean N.
    Aloisio, Giovanni
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 722 - 733
  • [2] Understanding Data Similarity in Large-Scale Scientific Datasets
    Linton, Payton
    Melodia, William
    Lazar, Alina
    Agarwal, Deborah
    Bianchi, Ludovico
    Ghoshal, Devarshi
    Pastorello, Gilbert
    Ramakrishnan, Lavanya
    Wu, Kesheng
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 4525 - 4531
  • [3] Performance Evaluation of Big Data Frameworks for Large-Scale Data Analytics
    Veiga, Jorge
    Exposito, Roberto R.
    Pardo, Xoan C.
    Taboada, Guillermo L.
    Tourino, Juan
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 424 - 431
  • [4] Towards algorithmic analytics for large-scale datasets
    Bzdok, Danilo
    Nichols, Thomas E.
    Smith, Stephen M.
    [J]. NATURE MACHINE INTELLIGENCE, 2019, 1 (07) : 296 - 306
  • [5] Towards algorithmic analytics for large-scale datasets
    Danilo Bzdok
    Thomas E. Nichols
    Stephen M. Smith
    [J]. Nature Machine Intelligence, 2019, 1 : 296 - 306
  • [6] Aggregation and Multidimensional Analysis of Big Data for Large-Scale Scientific Applications: Models, Issues, Analytics, and Beyond
    Cuzzocrea, Alfredo
    [J]. PROCEEDINGS OF THE 27TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, 2015,
  • [7] Distributed optimization over large-scale systems for big data analytics
    Shahbazian, Reza
    [J]. 4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2021, 19 (02): : 309 - 310
  • [8] Distributed optimization over large-scale systems for big data analytics
    Reza Shahbazian
    [J]. 4OR, 2021, 19 : 309 - 310
  • [9] BANKSAFE: Visual analytics for big data in large-scale computer networks
    Fischer, Fabian
    Fuchs, Johannes
    Mansmann, Florian
    Keim, Daniel A.
    [J]. INFORMATION VISUALIZATION, 2015, 14 (01) : 51 - 61
  • [10] Big Data Analytics for Large-scale Wireless Networks: Challenges and Opportunities
    Dai, Hong-Ning
    Wong, Raymond Chi-Wing
    Wang, Hao
    Zheng, Zibin
    Vasilakos, Athanasios V.
    [J]. ACM COMPUTING SURVEYS, 2019, 52 (05)