Vector approximate message passing algorithm for compressed sensing with structured matrix perturbation

被引:5
|
作者
Zhu, Jiang [1 ]
Zhang, Qi [1 ]
Meng, Xiangming [2 ]
Xu, Zhiwei [1 ]
机构
[1] Zhejiang Univ, Ocean Coll, Zhoushan 316021, Peoples R China
[2] Huawei Technol Co Ltd, Shanghai 201206, Peoples R China
来源
SIGNAL PROCESSING | 2020年 / 166卷
基金
中国国家自然科学基金;
关键词
VAMP; Structured perturbation; Compressed sensing; MAXIMUM-LIKELIHOOD; SIGN MEASUREMENTS; RECOVERY;
D O I
10.1016/j.sigpro.2019.107248
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider a general form of noisy compressive sensing (CS) where the sensing matrix is not precisely known. Such cases exist when there are imperfections or unknown calibration parameters during the measurement process. Particularly, the sensing matrix may have some structure, which makes the perturbation follow a fixed pattern. Previous work has focused on extending the approximate message passing (AMP) and LASSO algorithm to deal with the independent and identically distributed (i.i.d.) perturbation. Based on the recent VAMP algorithm, we take the structured perturbation into account and propose the perturbation considered vector approximate message passing (PC-VAMP) algorithm. Numerical results demonstrate the effectiveness of PC-VAMP. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Compressed Sensing With Upscaled Vector Approximate Message Passing
    Skuratovs, Nikolajs
    Davies, Michael E.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (07) : 4818 - 4836
  • [2] VECTOR APPROXIMATE MESSAGE PASSING FOR QUANTIZED COMPRESSED SENSING
    Franz, Daniel
    Kuehn, Volker
    [J]. 2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 341 - 345
  • [3] Complex Approximate Message Passing Algorithm for Two-Dimensional Compressed Sensing
    Hirabayashi, Akira
    Sugimoto, Jumpei
    Mimura, Kazushi
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2013, E96A (12) : 2391 - 2397
  • [4] COMPRESSED SENSING UNDER MATRIX UNCERTAINTY: OPTIMUM THRESHOLDS AND ROBUST APPROXIMATE MESSAGE PASSING
    Krzakala, Florent
    Mezard, Marc
    Zdeborova, Lenka
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 5519 - 5523
  • [5] AN APPROXIMATE MESSAGE PASSING ALGORITHM FOR RAPID PARAMETER-FREE COMPRESSED SENSING MRI
    Millard, Charles
    Hess, Aaron T.
    Mailhe, Boris
    Tanner, Jared
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 91 - 95
  • [6] Hybrid Vector Perturbation Precoding: The Blessing of Approximate Message Passing
    Lyu, Shanxiang
    Ling, Cong
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (01) : 178 - 193
  • [7] Performance Analysis of Approximate Message Passing for Distributed Compressed Sensing
    Hannak, Gabor
    Perelli, Alessandro
    Goertz, Norbert
    Matz, Gerald
    Davies, Mike E.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (05) : 857 - 870
  • [8] On Approximate Message Passing for Unsourced Access with Coded Compressed Sensing
    Amalladinne, Vamsi K.
    Pradhan, Asit Kumar
    Rush, Cynthia
    Chamberland, Jean-Francois
    Narayanan, Krishna R.
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 2995 - 3000
  • [9] WEIGHTED-DAMPED APPROXIMATE MESSAGE PASSING FOR COMPRESSED SENSING
    Wang, Shengchu
    Li, Yunzhou
    Gao, Zhen
    Wang, Jing
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 5865 - 5869
  • [10] Location constrained approximate message passing for compressed sensing MRI
    Sung, Kyunghyun
    Daniel, Bruce L.
    Hargreaves, Brian A.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2013, 70 (02) : 370 - 381