Classification of long-term EEG recordings

被引:0
|
作者
Kosar, K
Lhotska, L
Krajca, V
机构
[1] Czech Tech Univ, Gerstner Lab, Prague 16627 6, Czech Republic
[2] Univ Hosp Bulovka, Prague 18081 8, Czech Republic
关键词
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Computer assisted processing of long-term EEG recordings is gaining a growing importance. To simplify the work of a physician, that must visually evaluate long recordings, we present a method for automatic processing of EEG based on learning classifier. This method supports the automatic search of long-term EEG recording and detection of graphoelements - signal parts with characteristic shape and defined diagnostic value. Traditional methods of detection show great percent of error caused by the great variety of non-stationary EEG. The idea of this method is to break down the signal into stationary sections called segments using adaptive segmentation and create a set of normalized discriminative features representing segments. The groups of similar patterns of graphoelements form classes used for the learning of a classifier. Weighted features are used for classification performed by modified learning classifier fuzzy k-Nearest Neighbours. Results of classification describe classes of unknown segments. The implementation of this method was experimentally verified on a real EEG with the diagnosis of epilepsy.
引用
收藏
页码:322 / 332
页数:11
相关论文
共 50 条
  • [1] LONG-TERM EEG RECORDINGS FOR DIAGNOSIS AND TREATMENT OF THE EPILEPSIES
    STEFAN, H
    [J]. NERVENHEILKUNDE, 1987, 6 (07) : 279 - 283
  • [2] A spreadsheet application for processing long-term EEG recordings
    Ayala, Melvin
    Cabrerizo, Mercedes
    Tito, Maria
    Barreto, Armando
    Adjouadi, Malek
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2009, 39 (09) : 844 - 851
  • [3] Emergence of Persistent Networks in Long-Term Intracranial EEG Recordings
    Kramer, Mark A.
    Eden, Uri T.
    Lepage, Kyle Q.
    Kolaczyk, Eric D.
    Bianchi, Matt T.
    Cash, Sydney S.
    [J]. JOURNAL OF NEUROSCIENCE, 2011, 31 (44): : 15757 - 15767
  • [4] CARDIAC-ARRHYTHMIAS IN LONG-TERM EEG ECG RECORDINGS
    NOUSIAINEN, U
    MERVAALA, E
    TIIHONEN, P
    RIEKKINEN, PJ
    [J]. EPILEPSIA, 1986, 27 (05) : 633 - 633
  • [5] Long-term EEG/EMG recordings from chick embryos
    Martinez-Gonzalez, D.
    Rattenborg, N. C.
    Di Pascoli, S.
    Balaban, E.
    Pompeiano, M.
    [J]. JOURNAL OF SLEEP RESEARCH, 2012, 21 : 135 - 135
  • [6] Automatic detection of sleep episodes in long-term eeg recordings
    Malafeev, A.
    Wierzbicka, A.
    Wichniak, A.
    Jernajczyk, W.
    Achermann, P.
    [J]. JOURNAL OF SLEEP RESEARCH, 2016, 25 : 344 - 344
  • [7] THE EUROPEAN EEG DATABASE AS A NEW STANDARD FOR LONG-TERM EEG RECORDINGS IN EPILEPSY PATIENTS
    Schulze-Bonhage, A.
    Levanquyen, M.
    Sales, F.
    Neufang, M.
    Dourado, A.
    Ihle, M.
    [J]. EPILEPSIA, 2012, 53 : 13 - 13
  • [8] Towards Automatic Identification of Epileptic Recordings in Long-term EEG Monitoring
    Kok, Xuen Hoong
    Imtiaz, Syed Anas
    Rodriguez-Villegas, Esther
    [J]. 2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 273 - 276
  • [9] Preictal state identification by synchronization changes in long-term intracranial EEG recordings
    Le Van Quyen, M
    Soss, J
    Navarro, V
    Robertson, R
    Chavez, M
    Baulac, M
    Martinerie, J
    [J]. CLINICAL NEUROPHYSIOLOGY, 2005, 116 (03) : 559 - 568
  • [10] Latency of interictal epileptiform discharges in long-term EEG recordings in epilepsy patients
    Werhahn, Konrad J.
    Hartl, Elisabeth
    Hamann, Kristin
    Breimhorst, Markus
    Noachtar, Soheyl
    [J]. SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2015, 29 : 20 - 25