Peptide metal-organic frameworks under pressure: flexible linkers for cooperative compression

被引:47
|
作者
Navarro-Sanchez, Jose [1 ]
Mullor-Ruiz, Ismael [1 ,5 ]
Popescu, Catalin [2 ]
Santamaria-Perez, David [3 ]
Segura, Alfredo [3 ]
Errandonea, Daniel [3 ]
Gonzalez-Platas, Javier [4 ]
Marti-Gastaldo, Carlos [1 ]
机构
[1] Univ Valencia ICMol, Catedrat Jose Beltran 2, Paterna 46980, Spain
[2] CELLS ALBA Synchrotron Light Facil, Barcelona 08290, Spain
[3] Univ Valencia, Dept Fis Aplicada ICMUV, MALTA Consolider Team, Edificio Invest,C Dr Moliner 50, E-46100 Valencia, Spain
[4] Univ La Laguna, Dept Fis, Tenerife 38204, Spain
[5] Imperial Coll London, Dept Bioengn, London SW7 2AZ, England
关键词
ZEOLITIC IMIDAZOLATE FRAMEWORKS; SIDE-CHAIN CONTROL; X-RAY-DIFFRACTION; POROUS MATERIALS; SINGLE-CRYSTAL; PORE-SIZE;
D O I
10.1039/c8dt01765d
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
We investigate the structural response of a dense peptide metal-organic framework using in situ powder and single-crystal X-ray diffraction under high-pressures. Crystals of Zn(GlyTyr)(2) show a reversible compression by 13% in volume at 4 GPa that is facilitated by the ability of the peptidic linker to act as a flexible string for a cooperative response of the structure to strain. This structural transformation is controlled by changes to the conformation of the peptide, which enables a bond rearrangement in the coordination sphere of the metal and changes to the strength and directionality of the supramolecular interactions specific to the side chain groups in the dipeptide sequence. Compared to other structural transformations in Zn(ii) peptide MOFs, this behaviour is not affected by host/guest interactions and relies exclusively on the conformational flexibility of the peptide and its side chain chemistry.
引用
收藏
页码:10654 / 10659
页数:6
相关论文
共 50 条
  • [1] Peptide linkers soften metal-organic frameworks
    Liu, Tianyu
    [J]. MRS BULLETIN, 2019, 44 (05) : 328 - 328
  • [2] Homogeneity of flexible metal-organic frameworks containing mixed linkers
    Lescouet, Tristan
    Kockrick, Emanuel
    Bergeret, Gerard
    Pera-Titus, Marc
    Aguado, Sonia
    Farrusseng, David
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (20) : 10287 - 10293
  • [3] Metal-organic frameworks under pressure
    Collings, Ines E.
    Goodwin, Andrew L.
    [J]. JOURNAL OF APPLIED PHYSICS, 2019, 126 (18)
  • [4] Peptide linkers soften metal–organic frameworks
    Tianyu Liu
    [J]. MRS Bulletin, 2019, 44 : 328 - 328
  • [5] Mixed-ligand metal-organic frameworks incorporating rigid and flexible linkers
    Muguru, K.
    Oliver, C.
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2022, 78 : E707 - E707
  • [6] Cationic Metal-Organic Frameworks Synthesized from Cyclotetraphosphazene Linkers with Flexible Tentacles
    Davarci, Derya
    Erucar, Ilknur
    Yucesan, Gundog
    Zorlu, Yunus
    [J]. CRYSTAL GROWTH & DESIGN, 2022, 22 (12) : 7123 - 7132
  • [7] Metal-organic frameworks based on multicarboxylate linkers
    Ghasempour, Hosein
    Wang, Kun-Yu
    Powell, Joshua A.
    ZareKarizi, Farnoosh
    Lv, Xiu-Liang
    Morsali, Ali
    Zhou, Hong-Cai
    [J]. COORDINATION CHEMISTRY REVIEWS, 2021, 426
  • [8] Rotational Dynamics of Linkers in Metal-Organic Frameworks
    Gonzalez-Nelson, Adrian
    Coudert, Francois-Xavier
    van der Veen, Monique A.
    [J]. NANOMATERIALS, 2019, 9 (03):
  • [9] Flexible metal-organic frameworks
    Schneemann, A.
    Bon, V.
    Schwedler, I.
    Senkovska, I.
    Kaskel, S.
    Fischer, R. A.
    [J]. CHEMICAL SOCIETY REVIEWS, 2014, 43 (16) : 6062 - 6096
  • [10] Mechanochemistry of Metal-Organic Frameworks under Pressure and Shock
    Zhou, Xuan
    Miao, Yurun
    Suslick, Kenneth S.
    Dlott, Dana D.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2020, 53 (12) : 2806 - 2815