Time-Resolved X-Ray Ferromagnetic Resonance Method Based on Synchrotron Radiation

被引:1
|
作者
Yang Xia [1 ,2 ]
Li Junqi [1 ,3 ]
Cao Jiefeng [1 ,3 ]
Zhao Zilong [3 ]
Wang Yong [1 ,3 ]
Tai Renzhong [1 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai 201800, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China
关键词
X-ray optics; synchrotron radiation; time-resolved method; ferromagnetic resonance; spin precession; MAGNETORESISTANCE;
D O I
10.3788/AOS202141.1534002
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In combination with ferromagnetic resonance and magnetic circular dichroism, the time-resolved X-ray ferromagnetic resonance method based on synchrotron radiation devices, which adopts the "pump-probe" technique of phase shift mode, is a unique technique to study a wide class of spintronics issues such as spin transfer torque and spin current. In this paper, an experimental apparatus that allows for the combination of the picosecond time-resolved technique and X-ray ferromagnetic resonance is introduced for the first time at the third-generation synchrotron radiation light source in China, Shanghai Synchrotron Radiation Facility. With this apparatus, the single-layer Permalloy (Ni81Fe19, Py) undergoes ferromagnetic resonance under the 2. 5 GHz microwave excitation and we measure the time-dependent projection of electronic spin precession cone angle of Ni in the Ni81Fe19 film in the beam direction. The results show that the apparatus can excite the electronic spin precession of magnetic elements on the magnitude of 2. 5 GHz and detect the amplitude and phase of electronic spin precession on the picosecond scale. This apparatus can provide unique technical support for the investigation into the spintronic materials and devices.
引用
收藏
页数:7
相关论文
共 25 条
  • [1] ArenaD A, 2006, PHYS REV B, V74
  • [2] GIANT MAGNETORESISTANCE OF (001)FE/(001) CR MAGNETIC SUPERLATTICES
    BAIBICH, MN
    BROTO, JM
    FERT, A
    VANDAU, FN
    PETROFF, F
    EITENNE, P
    CREUZET, G
    FRIEDERICH, A
    CHAZELAS, J
    [J]. PHYSICAL REVIEW LETTERS, 1988, 61 (21) : 2472 - 2475
  • [3] Precessional dynamics of elemental moments in a ferromagnetic alloy
    Bailey, WE
    Cheng, L
    Keavney, DJ
    Kao, CC
    Vescovo, E
    Arena, DA
    [J]. PHYSICAL REVIEW B, 2004, 70 (17): : 1 - 4
  • [4] Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures
    Baker, A. A.
    Figueroa, A. I.
    Collins-McIntyre, L. J.
    van der Laan, G.
    Hesjedal, T.
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [5] Ultrafast magnetization dynamics of nanostructures
    Bigot, Jean-Yves
    Vomir, Mircea
    [J]. ANNALEN DER PHYSIK, 2013, 525 (1-2) : 2 - 30
  • [6] ENHANCED MAGNETORESISTANCE IN LAYERED MAGNETIC-STRUCTURES WITH ANTIFERROMAGNETIC INTERLAYER EXCHANGE
    BINASCH, G
    GRUNBERG, P
    SAURENBACH, F
    ZINN, W
    [J]. PHYSICAL REVIEW B, 1989, 39 (07): : 4828 - 4830
  • [7] ChenZ F, 2015, J CHINESEJOURNALOF L, V42z1
  • [8] Davis M E, 1973, SHORTPAPERS J IEEE T, V21, P9
  • [9] GeJ Q XiaT, 2020, ELECTRONICTESTING, V362, P183
  • [10] A phenomenological theory of damping in ferromagnetic materials
    Gilbert, TL
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (06) : 3443 - 3449