Background Subtraction with Moving Cameras via Bayesian Low-rank Estimation

被引:0
|
作者
Lyu Chengcheng [1 ]
Yu Lei [1 ]
Hu Shihui [1 ]
Sun Hong [1 ]
机构
[1] Wuhan Univ, Elect Informat Sch, Wuhan, Hubei, Peoples R China
关键词
Background subtraction; moving object detection; low-rank modeling; sparse Bayesian; ROBUST;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Background subtraction is a typical topic in the domain of video processing. In this paper, we propose to cope with background subtraction for separating moving objects from background even cameras are not fixed via modified Bayesian low-rank analysis. Particularly, the hierarchical Bayesian model is proposed for low-rank estimation where the perspective projection is exploited to compensate the camera moving. Extensive experiments show that the proposed method is comparable and outperforms the state-of-the-art.
引用
收藏
页码:133 / 137
页数:5
相关论文
共 50 条
  • [1] Robust Background Subtraction Method via Low-Rank and Structured Sparse Decomposition
    Ma, Minsheng
    Hu, Ruimin
    Chen, Shihong
    Xiao, Jing
    Wang, Zhongyuan
    [J]. CHINA COMMUNICATIONS, 2018, 15 (07) : 156 - 167
  • [2] Robust Background Subtraction Method via Low-Rank and Structured Sparse Decomposition
    Minsheng Ma
    Ruimin Hu
    Shihong Chen
    Jing Xiao
    Zhongyuan Wang
    [J]. China Communications, 2018, 15 (07) : 156 - 167
  • [3] Background Subtraction for Freely Moving Cameras
    Sheikh, Yaser
    Javed, Omar
    Kanade, Takeo
    [J]. 2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 1219 - 1225
  • [4] EFFICIENT BACKGROUND SUBTRACTION WITH LOW-RANK AND SPARSE MATRIX DECOMPOSITION
    Ebadi, Salehe Erfanian
    Ones, Valia Guerra
    Izquierdo, Ebroul
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4863 - 4867
  • [5] Background Subtraction Based on Low-Rank and Structured Sparse Decomposition
    Liu, Xin
    Zhao, Guoying
    Yao, Jiawen
    Qi, Chun
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (08) : 2502 - 2514
  • [6] Sparse Bayesian Methods for Low-Rank Matrix Estimation
    Babacan, S. Derin
    Luessi, Martin
    Molina, Rafael
    Katsaggelos, Aggelos K.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (08) : 3964 - 3977
  • [7] Detecting moving objects via the low-rank representation
    Yang Zhou
    Bingo Wing-Kuen Ling
    [J]. Signal, Image and Video Processing, 2019, 13 : 1593 - 1601
  • [8] Bayesian mmWave Channel Estimation via Exploiting Joint Sparse and Low-Rank Structures
    Liu, Kaihui
    Li, Xingjian
    Fang, Jun
    Li, Hongbin
    [J]. IEEE ACCESS, 2019, 7 : 48961 - 48970
  • [9] Joint Video Frame Set Division and Low-Rank Decomposition for Background Subtraction
    Wen, Jiajun
    Xu, Yong
    Tang, Jinhui
    Zhan, Yinwei
    Lai, Zhihui
    Guo, Xiaotang
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2014, 24 (12) : 2034 - 2048
  • [10] Background subtraction with multi-scale structured low-rank and sparse factorization
    Zheng, Aihua
    Zou, Tian
    Zhao, Yumiao
    Jiang, Bo
    Tang, Jin
    Li, Chenglong
    [J]. NEUROCOMPUTING, 2019, 328 : 113 - 121