Wavelet-based estimation of the hemodynamic responses in diffuse optical imaging

被引:17
|
作者
Lina, J. M. [1 ,2 ]
Matteau-Pelletier, C. [3 ,4 ]
Dehaes, M. [3 ,4 ]
Desjardins, M. [3 ,4 ]
Lesage, F. [2 ,3 ,4 ]
机构
[1] Ecole Technol Super, Dept Genie Elect, Montreal, PQ H3C 1K3, Canada
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3A7, Canada
[3] Ecole Polytech, Dept Genie Elect, Montreal, PQ H3C 3A7, Canada
[4] Ecole Polytech, Inst Genie Biomed, Montreal, PQ H3C 3A7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Hemodynamic response; NIRS; Evoked brain activity; Wavelet; Inverse problems; FRACTIONAL BROWNIAN-MOTION; NEAR-INFRARED SPECTROSCOPY; TIME-SERIES; BRAIN ACTIVATION; INVERSE PROBLEMS; TOMOGRAPHY; COEFFICIENTS; MODELS; DECOMPOSITION; TOPOGRAPHY;
D O I
10.1016/j.media.2010.04.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diffuse optical imaging uses light to provide a surrogate measure of neuronal activation through the hemodynamic responses. The relative low absorption of near-infrared light enables measurements of hemoglobin changes at depths reaching the first centimeter of the cortex. The rapid rate of acquisition and the access to both oxy and deoxy-hemoglobin leads to new challenges when trying to uncouple physiology from the signal of interest. In particular, recent work provided evidence of the presence of a 1/f noise structure in optical signals and showed that a general linear model based on wavelets can be used to decorrelate the structured noise and provide a superior estimator of response amplitude when compared with conventional techniques. In this work the wavelet techniques are extended to recover the full temporal shape of the hemodynamic responses. A comparison with other models is provided as well as a case study on finger-tapping data. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:606 / 616
页数:11
相关论文
共 50 条
  • [1] Wavelet-based estimation of long-memory noise in diffuse optical imaging
    Matteau-Pelletier, C.
    Dehaes, M.
    Lesage, F.
    Lina, J. M.
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 400 - +
  • [2] 1/f Noise in Diffuse Optical Imaging and Wavelet-Based Response Estimation
    Matteau-Pelletier, Carl
    Dehaes, Mathieu
    Lesage, Frederic
    Lina, Jean-Marc
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (03) : 415 - 422
  • [3] Wavelet-based estimation of hemodynamic response function
    Srikanth, R
    Muralishankar, R
    Ramakrishnan, AG
    [J]. NEURAL INFORMATION PROCESSING, 2004, 3316 : 1285 - 1291
  • [4] Wavelet-based optical flow estimation
    Chen, LF
    Liao, HYM
    Lin, JC
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2002, 12 (01) : 1 - 12
  • [5] Wavelet-based optical flow estimation
    Chen, LF
    Lin, JC
    Liao, HYM
    [J]. 15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING, 2000, : 1056 - 1059
  • [6] Fluorescence diffuse optical tomography: a wavelet-based model reduction
    Frassati, Anne
    DaSilva, Anabela
    Dinten, Jean-Marc
    Georges, Didier
    [J]. DIFFUSE OPTICAL IMAGING OF TISSUE, 2007, 6629
  • [7] Wavelet-based estimation of hemodynamic response function from fMRI data
    Srikanth, R.
    Ramakrshnan, A. G.
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2006, 16 (02) : 125 - 138
  • [8] A time-domain wavelet-based approach for fluorescence diffuse optical tomography
    Ducros, Nicolas
    Da Silva, Anabela
    Dinten, Jean-Marc
    Seelamantula, Chandra Sekhar
    Unser, Michael
    Peyrin, Francoise
    [J]. MEDICAL PHYSICS, 2010, 37 (06) : 2890 - 2900
  • [9] Wavelet-based optical velocimetry for oil spill flow rate estimation
    Osman, A. B.
    Ovinis, Mark
    Hashim, F. M.
    Faye, I
    [J]. MEASUREMENT, 2019, 138 : 485 - 496
  • [10] Wavelet-based estimation of a discriminant function
    Chang, WJ
    Kim, SH
    Vidakovic, B
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2003, 19 (03) : 185 - 198