BIODIVERSITY ASSESSMENT USING HIERARCHICAL CLUSTERING OVER HYPERSPECTRAL IMAGES

被引:0
|
作者
Medina, Ollantay [1 ]
Manian, Vidya [2 ]
Chinea, J. Danilo [3 ]
机构
[1] Univ Puerto Rico, Call Box 9000, Mayaguez, PR 00681 USA
[2] Univ Puerto Rico Mayaguez, Dept Elect & Comp Engn, Mayaguez, PR 00681 USA
[3] Univ Puerto Rico Mayaguez, Dept Biol, Mayaguez, PR 00681 USA
关键词
Hyperspectral Images; Biodiversity; Minimum Spanning Tree; Clustering;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral images represent an important source of infonnation to assess ecosystem biodiversity. In particular, plant species richness is a primary indicator of biodiversity. This paper aims to use spectral variance to predict vegetation richness, known as Spectral Variation Hypothesis. A hierarchical clustering method based on minimum spanning tree computations retrieve clusters whose Shannon entropy reflects the species richness on a given zone. These entropies correlate well with the ones calculated directly from field data.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] BIODIVERSITY ASSESSMENT USING HIERARCHICAL CLUSTERING OVER HYPERSPECTRAL IMAGES
    Medina, Antay
    Manian, Vidya
    Chinea, I. Danilo
    [J]. 2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2013,
  • [2] Biodiversity Assessment Using Hierarchical Agglomerative Clustering and Spectral Unmixing over Hyperspectral Images
    Medina, Ollantay
    Manian, Vidya
    Chinea, J. Danilo
    [J]. SENSORS, 2013, 13 (10): : 13949 - 13959
  • [3] Detection of gaseous plumes in IR hyperspectral images using hierarchical clustering
    Hirsch, Eitan
    Agassi, Eyal
    [J]. APPLIED OPTICS, 2007, 46 (25) : 6368 - 6374
  • [4] Biodiversity Assessment in Coral Reef Benthic Habitats Using Hyperspectral Images
    Sotomayor, Alejandro
    Vidal, Jesus
    Medina, Ollantay
    Manian, Vidya
    [J]. 2016 WORLD AUTOMATION CONGRESS (WAC), 2016,
  • [5] Experimental Study of Hierarchical Clustering for Unmixing of Hyperspectral Images
    Prades, Jose
    Salazar, Addisson
    Safont, Gonzalo
    Vergara, Luis
    [J]. PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON AEROSPACE ELECTRONICS AND REMOTE SENSING TECHNOLOGY (ICARES 2021), 2021,
  • [6] Hierarchical Clustering of Hyperspectral Images Using Rank-Two Nonnegative Matrix Factorization
    Gillis, Nicolas
    Kuang, Da
    Park, Haesun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (04): : 2066 - 2078
  • [7] Unsupervised Clustering for Hyperspectral Images
    Bilius, Laura Bianca
    Pentiuc, Stefan Gheorghe
    [J]. SYMMETRY-BASEL, 2020, 12 (02):
  • [8] Spectral unmixing of hyperspectral images using a hierarchical Bayesian model
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PTS 1-3, PROCEEDINGS, 2007, : 1209 - +
  • [9] Feature Extraction and Classification of Hyperspectral Images Using Hierarchical Network
    Gao, Yanlong
    Feng, Yan
    Yu, Xumin
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (02) : 287 - 291
  • [10] Estimation of the Number of Endmembers in Hyperspectral Images Using Agglomerative Clustering
    Prades, Jose
    Safont, Gonzalo
    Salazar, Addisson
    Vergara, Luis
    [J]. REMOTE SENSING, 2020, 12 (21) : 1 - 22