Combining image processing and machine learning to identify invasive plants in high-resolution images

被引:27
|
作者
Baron, Jackson [1 ]
Hill, D. J. [1 ]
Elmiligi, H. [2 ]
机构
[1] Thompson Rivers Univ, Dept Geog & Environm Studies, Kamloops, BC, Canada
[2] Thompson Rivers Univ, Dept Comp Sci, Kamloops, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CLASSIFICATION; FEATURES; FOREST; SCALE;
D O I
10.1080/01431161.2017.1420940
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This study investigates the combination of image processing and supervised classification to identify invasive yellow flag iris (YFI; Iris pseudacorus) plants in images collected by an un-calibrated, visible-light camera carried aloft by an unmanned aerial vehicle. Specifically, the image-processing steps of colour thresholding, template matching, and/or de-speckling prior to training a supervised random forest classifier are explored in terms of their benefits towards improving the resulting classification of YFI plants within an image. The impacts of performing feature selection prior to training the random forest classifier are also explored. This analysis demonstrates the importance of image processing when preparing images for classification and reveals that applying the image-processing steps of colour thresholding and de-speckling prior to classification by a random forest classifier trained to identify patches of YFI plants using spectral and textural features provided the best results.
引用
收藏
页码:5099 / 5118
页数:20
相关论文
共 50 条
  • [1] HIGH-RESOLUTION IMAGE-PROCESSING
    DORIGNAC, D
    JOUFFREY, B
    [J]. JOURNAL DE MICROSCOPIE ET DE SPECTROSCOPIE ELECTRONIQUES, 1979, 4 (03): : A9 - A9
  • [2] Machine learning paradigms in high-resolution remote sensing image interpretation
    Zhou, Peicheng
    Cheng, Gong
    Yao, Xiwen
    Han, Junwei
    [J]. National Remote Sensing Bulletin, 2021, 25 (01) : 182 - 197
  • [3] AN ANALYSIS OF HIGH-RESOLUTION IMAGES BY DIGITAL PROCESSING
    PEREZRAMIREZ, JG
    MAZEROLLES, L
    MICHEL, D
    PORTIER, R
    CHEVALIER, JP
    [J]. JOURNAL DE MICROSCOPIE ET DE SPECTROSCOPIE ELECTRONIQUES, 1988, 13 (03): : A56 - A56
  • [4] An automated image processing routine for segmentation of cell cytoplasms in high-resolution autofluorescence images
    Walsh, Alex J.
    Skala, Melissa C.
    [J]. MULTIPHOTON MICROSCOPY IN THE BIOMEDICAL SCIENCES XIV, 2014, 8948
  • [5] Analysis of Fine Crack Images Using Image Processing Technique and High-Resolution Camera
    Jeong, Hoseong
    Jeong, Baekeun
    Han, Myounghee
    Cho, Dooyong
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (20):
  • [6] An integral design strategy combining optical system and image processing to obtain high resolution images
    Wang, Jiaoyang
    Wang, Lin
    Yang, Ying
    Gong, Rui
    Shao, Xiaopeng
    Liang, Chao
    Xu, Jun
    [J]. REMOTELY SENSED DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING XII, 2016, 9874
  • [7] Image-to-image registration to produce high-resolution images
    Sheikho, KM
    Al-Arafi, F
    [J]. EARTH OBSERVATION AND REMOTE SENSING, 1997, 14 (05): : 763 - +
  • [8] Aorta Segmentation in 3D CT Images by Combining Image Processing and Machine Learning Techniques
    Mavridis, Christos
    Economopoulos, Theodore L.
    Benetos, Georgios
    Matsopoulos, George K.
    [J]. CARDIOVASCULAR ENGINEERING AND TECHNOLOGY, 2024, 15 (03) : 359 - 373
  • [9] Machine Learning Classification and Accuracy Assessment from High-Resolution Images of Coastal Wetlands
    Martinez Prentice, Ricardo
    Villoslada Pecina, Miguel
    Ward, Raymond D.
    Bergamo, Thaisa F.
    Joyce, Chris B.
    Sepp, Kalev
    [J]. REMOTE SENSING, 2021, 13 (18)
  • [10] Flooded rice variables from high-resolution multispectral images and machine learning algorithms
    Eugenio, Fernando Coelho
    Grohs, Mara
    Schuh, Mateus Sabadi
    Venancio, Luan Peroni
    Schons, Cristine
    Badin, Tiago Luis
    Mallmann, Caroline Lorenci
    Fernandes, Pablo
    da Silva, Sally Deborah Pereira
    Fantinel, Roberta Aparecida
    [J]. REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2023, 31