Fibrations and log-symplectic structures

被引:5
|
作者
Cavalcanti, Gil R. [1 ]
Klaasse, Ralph L. [1 ,2 ]
机构
[1] Univ Utrecht, Dept Math, NL-3508 TA Utrecht, Netherlands
[2] Univ Libre Bruxelles, Dept Math, B-1050 Brussels, Belgium
关键词
LEFSCHETZ; TOPOLOGY;
D O I
10.4310/JSG.2019.v17.n3.a1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Log-symplectic structures are Poisson structures pi on X-2n for which Lambda(n)pi vanishes transversally. By viewing them as symplectic forms in a Lie algebroid, the b-tangent bundle, we use symplectic techniques to obtain existence results for log-symplectic structures on total spaces of fibration-like maps. More precisely, we introduce the notion of a b-hyperfibration and show that they give rise to log-symplectic structures. Moreover, we link log-symplectic structures to achiral Lefschetz fibrations and folded-symplectic structures.
引用
收藏
页码:603 / 638
页数:36
相关论文
共 50 条