Deeply-Recursive Convolutional Network for Image Super-Resolution

被引:32
|
作者
Kim, Jiwon [1 ]
Lee, Jung Kwon [1 ]
Lee, Kyoung Mu [1 ]
机构
[1] Seoul Natl Univ, ASRI, Dept ECE, Seoul, South Korea
关键词
D O I
10.1109/CVPR.2016.181
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an image super-resolution method (SR) using a deeply-recursive convolutional network (DRCN). Our network has a very deep recursive layer (up to 16 recursions). Increasing recursion depth can improve performance without introducing new parameters for additional convolutions. Albeit advantages, learning a DRCN is very hard with a standard gradient descent method due to exploding/vanishing gradients. To ease the difficulty of training, we propose two extensions: recursive-supervision and skip-connection. Our method outperforms previous methods by a large margin.
引用
收藏
页码:1637 / 1645
页数:9
相关论文
共 50 条
  • [1] A DEEPLY-RECURSIVE CONVOLUTIONAL NETWORK FOR CROWD COUNTING
    Ding, Xinghao
    Lin, Zhirui
    He, Fujin
    Wang, Yu
    Huang, Yue
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 1942 - 1946
  • [2] Deeply-recursive convolutional neural network for Raman spectra identification
    Zhou, Wei
    Tang, Yujun
    Qian, Ziheng
    Wang, Junwei
    Guo, Hanming
    [J]. RSC ADVANCES, 2022, 12 (08) : 5053 - 5061
  • [3] Speedy and accurate image super-resolution via deeply recursive CNN with skip connection and network in network
    Guo, Dan
    Niu, Yanxiong
    Xie, Pengyan
    [J]. IET IMAGE PROCESSING, 2019, 13 (07) : 1201 - 1209
  • [4] SCRSR: An efficient recursive convolutional neural network for fast and accurate image super-resolution
    Lin, Daoyu
    Xu, Guangluan
    Xu, Wenjia
    Wang, Yang
    Sun, Xian
    Fu, Kun
    [J]. NEUROCOMPUTING, 2020, 398 : 399 - 407
  • [5] Multiscale Recursive Feedback Network for Image Super-Resolution
    Chen, Xiao
    Sun, Chaowen
    [J]. IEEE ACCESS, 2022, 10 : 6393 - 6406
  • [6] Hierarchical dense recursive network for image super-resolution
    Jiang, Kui
    Wang, Zhongyuan
    Yi, Peng
    Jiang, Junjun
    [J]. PATTERN RECOGNITION, 2020, 107
  • [7] Deep Recursive Network for Hyperspectral Image Super-Resolution
    Wei, Wei
    Nie, Jiangtao
    Li, Yong
    Zhang, Lei
    Zhang, Yanning
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 : 1233 - 1244
  • [8] Memory Recursive Network for Single Image Super-Resolution
    Liu, Jie
    Zou, Minqiang
    Tang, Jie
    Wu, Gangshan
    [J]. MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 2202 - 2210
  • [9] Image Fusion and Super-Resolution with Convolutional Neural Network
    Zhong, Jinying
    Yang, Bin
    Li, Yuehua
    Zhong, Fei
    Chen, Zhongze
    [J]. PATTERN RECOGNITION (CCPR 2016), PT II, 2016, 663 : 78 - 88
  • [10] Pixel attention convolutional network for image super-resolution
    Wang, Xin
    Zhang, Shufen
    Lin, Yuanyuan
    Lyu, Yanxia
    Zhang, Jiale
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (11): : 8589 - 8599