On the least property of the semilattice congruences on PO-semigroups

被引:2
|
作者
Gao, ZL [1 ]
机构
[1] Yangpu Coll Educ, Shanghai 200093, Peoples R China
关键词
Complete Solution; Semilattice Congruence;
D O I
10.1007/PL00005949
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the notion of an ordered semilattice congruence, and introduce the related equivalence relation n on po-semigroups. We study the least property of (ordered) semilattice congruences, and prove: 1. N is the least ordered semilattice congruence on po-semigroups (cf. [1]). 2. n is the least semilattice congruence on po-semigroups. 3. N is not the least semilattice congruence on po-semigroups in general. Thus, Ne give a complete solution to the problem posed by N. Kehayopulu in [1].
引用
收藏
页码:323 / 333
页数:11
相关论文
共 50 条
  • [1] On weak commutativity of po-semigroups and their semilattice decompositions
    Cao, YL
    SEMIGROUP FORUM, 1999, 58 (03) : 386 - 394
  • [2] On weak commutativity of po-semigroups and their semilattice decompositions
    Yonglin Cao
    Semigroup Forum, 1999, 58 : 386 - 394
  • [3] BOUNDED PO-SEMIGROUPS
    SHMUELY, Z
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 58 (JUL) : 37 - 43
  • [4] ON THE STRUCTURE OF CERTAIN PO-SEMIGROUPS
    HIPPISLEYCOX, SD
    SEMIGROUP FORUM, 1992, 44 (02) : 213 - 220
  • [5] Nil-extensions of simple po-semigroups
    Cao, YL
    Xu, XH
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (05) : 2477 - 2496
  • [6] HESITANT FUZZY IDEAL EXTENSION IN PO-SEMIGROUPS
    Abbasi, M. Y.
    Talee, A. F.
    Xie, X. Y.
    Khan, S. A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2018, 8 (02): : 509 - 521
  • [7] Fleischer po-semigroups and quantum B-algebras
    Kuhr, Jan
    Paseka, Jan
    2020 IEEE 50TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2020), 2020, : 285 - 290
  • [8] ON NIL-EXTENSIONS OF LEFT STRONGLY SIMPLE po-SEMIGROUPS
    Zhu, Qing Shun
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 26 (03): : 405 - 416
  • [9] Congruences on semigroups with the congruence extension property
    Tang, XL
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (11) : 5439 - 5461
  • [10] One Class of the Least Congruences on Completely Regular Semigroups
    张建刚
    申冉
    Journal of Donghua University(English Edition), 2021, 38 (03) : 278 - 282