On-chip micro-flow polystyrene bead-based immunoassay for quantitative detection of tacrolimus (FK506)

被引:64
|
作者
Murakami, Y
Endo, T
Yamamura, S
Nagatani, N
Takamura, Y
Tamiya, E
机构
[1] Japan Adv Inst Sci & Technol, Sch Mat Sci, Dept Chem Mat Sci, Tatsunokuchi, Ishikawa 9231292, Japan
[2] Fujisawa Pharmaceut Co Ltd, Biopharmaceut & Pharmacokinet Res Labs, Yodogawa Ku, Osaka 5328514, Japan
[3] Japan Sci & Technol Agcy, Tatsunokuchi, Ishikawa 9231292, Japan
基金
日本科学技术振兴机构;
关键词
tacrolimus (FK506); microfluidics; therapeutic drug monitoring; blood concentration; competitive immunoassay;
D O I
10.1016/j.ab.2004.07.029
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Tacrolimus (FK506) is a widely used immunosuppressant for preventing allograft rejection and the treatment of atopic dermatitis. FK506 necessitates therapeutic drug monitoring because of inter- and intrapatient variability and the lack of correlation between the administered close and the blood concentration. Previous immunoassay-based methods required a relatively long assay time and troublesome liquid-handling procedures. In the present study, we aimed to establish a rapid monitoring method for FK506 determination by using a poly(dimethylsiloxane) (PDMS)-based microfluidic device. Polystyrene beads were coated with mouse anti-FK506 antibody and placed in the flow channel. As a competitive assay, sample Solution was allowed to react in the flow channel. After the addition of the fluorogenic substrate, the fluorescent signal was observed under a microscope. As a result, the developed assay allowed a short detection time of approximately 15 min per each sample and a high sensitivity even by using only a single bead. The feasibility of performing a competitive assay using a PDMS-based antibody chip gives promising results over the existing immunoassay-based methods. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:111 / 116
页数:6
相关论文
共 14 条
  • [1] Quantitative immunoassay for measuring tacrolimus (FK506)
    Charter, L
    Zhitnik, V
    Caruso, A
    Nguyen, T
    Bodepudi, V
    Loor, R
    CLINICAL CHEMISTRY, 2004, 50 (06) : A132 - A132
  • [2] LED Excitation of an On-chip Imaging Flow Cytometer for Bead-based Immunoassay
    Yuan, Xilong
    Darcie, Todd
    Aitchison, J. Stewart
    McKendry, Jonathan J. D.
    Strain, Michael J.
    Dawson, Martin D.
    2020 IEEE PHOTONICS CONFERENCE (IPC), 2020,
  • [3] On-chip signal amplification of magnetic bead-based immunoassay by aviating magnetic bead chains
    Jalal, Uddin M.
    Jin, Gyeong Jun
    Eom, Kyu Shik
    Kim, Min Ho
    Shim, Joon S.
    BIOELECTROCHEMISTRY, 2018, 122 : 221 - 226
  • [4] Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection
    Yang, Sung-Yi
    Lien, Kang-Yi
    Huang, Kao-Jean
    Lei, Huan-Yao
    Lee, Gwo-Bin
    BIOSENSORS & BIOELECTRONICS, 2008, 24 (04): : 855 - 862
  • [5] Bead-based immunoassays using a micro-chip flow cytometer
    Holmes, David
    She, Joseph K.
    Roach, Peter L.
    Morgan, Hywel
    LAB ON A CHIP, 2007, 7 (08) : 1048 - 1056
  • [6] Micro volume rotating disk electrode (RDE) amperometric detection for a bead-based immunoassay
    Wijayawardhana, CA
    Halsall, HB
    Heineman, R
    ANALYTICA CHIMICA ACTA, 1999, 399 (1-2) : 3 - 11
  • [7] On-chip immune cell activation and subsequent time-resolved magnetic bead-based cytokine detection
    Patthara Kongsuphol
    Yunxiao Liu
    Qasem Ramadan
    Biomedical Microdevices, 2016, 18
  • [8] On-chip immune cell activation and subsequent time-resolved magnetic bead-based cytokine detection
    Kongsuphol, Patthara
    Liu, Yunxiao
    Ramadan, Qasem
    BIOMEDICAL MICRODEVICES, 2016, 18 (05)
  • [9] Ergometrine sensing in rye flour by a magnetic bead-based immunoassay followed by flow injection analysis with amperometric detection
    Hoefs, Soraya
    Jaut, Valerie
    Schneider, Rudolf J.
    TALANTA, 2023, 254
  • [10] Magnetic Bead-Based Immunoassay Allows Rapid, Inexpensive, and Quantitative Detection of Human SARS-CoV-2 Antibodies
    Huergo, Luciano F.
    Selim, Khaled A.
    Conzentino, Marcelo S.
    Gerhardt, Edileusa C. M.
    Santos, Adrian R. S.
    Wagner, Berenike
    Alford, Janette T.
    Deobald, Nelli
    Pedrosa, Fabio O.
    de Souza, Emanuel M.
    Nogueira, Meri B.
    Raboni, Sonia M.
    Souto, Denio
    Rego, Fabiane G. M.
    Zanette, Dalila L.
    Aoki, Mateus N.
    Nardin, Jeanine M.
    Fornazari, Bruna
    Morales, Hugo M. P.
    Borges, Vania A.
    Nelde, Annika
    Walz, Juliane S.
    Becker, Matthias
    Schneiderhan-Marra, Nicole
    Rothbauer, Ulrich
    Reis, Rodrigo A.
    Forchhammer, Karl
    ACS SENSORS, 2021, 6 (03): : 703 - 708