Integrating MOFs as precursor, especially for employing N-containing organic linkers, with sulfides is an effective method to prepare the highly efficient N-doped carbon supported metal-based catalysts for hydrogenation of nitroarenes. In this work, a N,Fe-containing metal organic frameworks (MOFs; termed as MIL88-HMTA) with spindle-like structure was prepared via self-assembly method, in which hexamethylenetetramine (HMTA) linker was introduced as N source. Subsequently, N-doped carbon supported FeSx-Fe2O3 catalyst (named FeSx-Fe2O3@CN) was fabricated upon the pyrolysis of sulfurized MIL88-HMTA. Catalytic experiments reveal that the FeSx-Fe2O3@CN delivered excellent performance for hydrogenation of nitroarenes in comparison with those of catalyst without sulfidation process (Fe2O3@CN) and conventional MIL88 derived catalyst (Fe2O3@C). The XRD, TEM, SEM/EDX, Raman, UV, and XPS analyses have revealed that the developed FeSx-Fe2O3@CN catalyst exhibited outstanding catalytic efficiency was ascribed to synergistic effect between FeSx and Fe2O3 species, abundant structural defects, more Fe-N-x species, and strengthened decomposition ability of hydrazine hydrate (N2H4.H2O). Furthermore, the effect of sulfidation ratio (the mass ratio between thioacetamide and MIL88-HMTA) towards preparation of the developed FeSSx-Fe2O3@CN on the catalytic activity of hydrogenation reaction was also systematically performed. Notably, the optimized catalyst (denoted as FeSSx-Fe2O3@CN-8) exhibited unexpected performance and recyclability for hydrogenation of nitroarenes under mild condition. The pyrolysis of sulfurized N-containing MOFs may present a facile approach for fabricating MOFs-derived N-doped carbon supported catalysts, which provides a potential application in heterogeneous catalytic reactions.