Noise-robust automatic speech recognition using a predictive echo state network

被引:57
|
作者
Skowronski, Mark D. [1 ]
Harris, John G.
机构
[1] Univ Western Ontario, Dept Biol, London, ON N6A 5B8, Canada
[2] Univ Florida, Computat NeuroEngn Lab, Gainesville, FL 32611 USA
关键词
digit recognition; noise-robust automatic speech recognition; predictive echo state network;
D O I
10.1109/TASL.2007.896669
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Artificial neural networks have been shown to perform well in automatic speech recognition (ASR) tasks, although their complexity and excessive computational costs have limited their use. Recently, a recurrent neural network with simplified training, the echo state network (ESN), was introduced by Jaeger and shown to outperform conventional methods in time series prediction experiments. We created the predictive ESN classifier by combining the ESN with a state machine framework. In small-vocabulary ASR experiments, we compared the noise-robust performance of the predictive ESN classifier with a hidden Markov model (HMM) as a function of model size and signal-to-noise ratio (SNR). The predictive ESN classifier outperformed an HMM by 8-dB SNR, and both models achieved maximum noise-robust accuracy for architectures with more states and fewer kernels per state. Using ten trials of random sets of training/validation/test speakers, accuracy for the predictive ESN classifier, averaged between 0 and 20 dB SNR, was 81 +/- 3%, compared to 61 +/- 2% for an HMM. The closed-form regression training for the ESN significantly reduced the computational cost of the network, and the reservoir of the ESN created a high-dimensional representation of the input with memory which led to increased noise-robust classification.
引用
收藏
页码:1724 / 1730
页数:7
相关论文
共 50 条
  • [1] Noise-robust automatic speech recognition using a discriminative echo state network
    Skowronski, Mark D.
    Harris, John G.
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, 2007, : 1771 - 1774
  • [2] An overview of noise-robust automatic speech recognition
    Li, Jinyu
    Deng, Li
    Gong, Yifan
    Haeb-Umbach, Reinhold
    [J]. IEEE Transactions on Audio, Speech and Language Processing, 2014, 22 (04): : 745 - 777
  • [3] Automatic speech recognition using a predictive echo state network classifier
    Skowronski, Mark D.
    Harris, John G.
    [J]. NEURAL NETWORKS, 2007, 20 (03) : 414 - 423
  • [4] An Overview of Noise-Robust Automatic Speech Recognition
    Li, Jinyu
    Deng, Li
    Gong, Yifan
    Haeb-Umbach, Reinhold
    [J]. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2014, 22 (04) : 745 - 777
  • [5] Mapping Sparse Representation to State Likelihoods in Noise-Robust Automatic Speech Recognition
    Mahkonen, Katariina
    Hurmalainen, Antti
    Virtanen, Tuomas
    Gemmeke, Jort
    [J]. 12TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2011 (INTERSPEECH 2011), VOLS 1-5, 2011, : 472 - +
  • [6] Factorial Speech Processing Models for Noise-Robust Automatic Speech Recognition
    Khademian, Mahdi
    Homayounpour, Mohammad Mehdi
    [J]. 2015 23RD IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2015, : 637 - 642
  • [7] INCORPORATING MASK MODELLING FOR NOISE-ROBUST AUTOMATIC SPEECH RECOGNITION
    Koekueer, Muenevver
    Jancovic, Peter
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3929 - 3932
  • [8] Empirical Mode Decomposition For Noise-Robust Automatic Speech Recognition
    Wu, Kuo-Hao
    Chen, Chia-Ping
    [J]. 11TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2010 (INTERSPEECH 2010), VOLS 3 AND 4, 2010, : 2074 - 2077
  • [9] A companding front end for noise-robust automatic speech recognition
    Guinness, J
    Raj, B
    Schmidt-Nielsen, B
    Turicchia, L
    Sarpeshkar, R
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 249 - 252
  • [10] Noise-Robust Algorithm of Speech Features Extraction for Automatic Speech Recognition System
    Yakhnev, A. N.
    Pisarev, A. S.
    [J]. PROCEEDINGS OF THE XIX IEEE INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND MEASUREMENTS (SCM 2016), 2016, : 206 - 208