An eco-driving system for electric vehicles with signal control under V2X environment

被引:82
|
作者
Li, Ming [1 ]
Wu, Xinkai [1 ,2 ]
He, Xiaozheng [3 ]
Yu, Guizhen [1 ,2 ]
Wang, Yunpeng [1 ,2 ]
机构
[1] Beihang Univ, Sch Transportat Sci & Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Beijing 100191, Peoples R China
[3] Rensselaer Polytech Inst, Dept Civil & Environm Engn, 110 8th St, Troy, NY 12180 USA
基金
中国国家自然科学基金;
关键词
Electric vehicle; Signal control; Connected vehicles; Eco-driving system; Bi-objective; TRAJECTORY DESIGN; OPTIMIZATION; INTERSECTION;
D O I
10.1016/j.trc.2018.06.002
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
The benefit of eco-driving of electric vehicles (EVs) has been studied with the promising connected vehicle (i.e. V2X) technology in recent years. Whereas, it is still in doubt that how traffic signal control affects EV energy consumption. Therefore, it is necessary to explore the interactions between the traffic signal control and EV energy consumption. This research aims at studying the energy efficiency and traffic mobility of the EV system under V2X environment. An optimization model is proposed to meet both operation and energy efficiency for an EV transportation system with both connected EVs (CEVs) and non-CEVs. For CEVs, a stage-wise approximation model is implemented to provide an optimal speed control strategy. Non-CEVs obey a car-following rule suggested by the well-known Intelligent Driver Model (IDM) to achieve ecodriving. The eco-driving EV system is then integrated with signal control and a bi-objective and multi-stage optimization problem is formulated. For such a large-scale problem, a hybrid intelligent algorithm merging genetic algorithm (GA) and particle swarm optimization (PSO) is implemented. At last, a validation case is performed on an arterial with four intersections with different traffic demands. Results show that cycle-based signal control could improve both traffic mobility and energy saving of the EV system with eco-driving compared to a fixed signal timing plan. The total consumed energy decreases as the CEV penetration rate augments in general.
引用
收藏
页码:335 / 350
页数:16
相关论文
共 50 条
  • [1] Enhanced eco-driving system based on V2X communication
    Chen, Yuxiao
    Zhang, Dezhao
    Li, Keqiang
    2012 15TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2012, : 200 - 205
  • [2] Eco-driving at signalised intersections for electric vehicles
    Zhang, Rui
    Yao, Enjian
    IET INTELLIGENT TRANSPORT SYSTEMS, 2015, 9 (05) : 488 - 497
  • [3] The Eco-Driving Considering Coordinated Control Strategy for the Intelligent Electric Vehicles
    Hao, Liang
    Sun, Bohua
    Li, Gang
    Guo, Lixin
    IEEE ACCESS, 2021, 9 : 10686 - 10698
  • [4] Development of Analytical Eco-Driving Cycles for Electric Vehicles
    Ribelles, L. A. Wulf
    Gillet, K.
    Colin, G.
    Chamaillard, Y.
    Simon, A.
    Nouillant, C.
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 1359 - 1366
  • [5] Energy Analysis of Eco-Driving Maneuvers on Electric Vehicles
    Araque, Edwin Solano
    Colin, Guillaume
    Cloarec, Guy-Michel
    Ketfi-Cherif, Ahmed
    Chamaillard, Yann
    IFAC PAPERSONLINE, 2018, 51 (31): : 195 - 200
  • [6] Energy Impact of Connected Eco-driving on Electric Vehicles
    Qi, Xuewei
    Barth, Matthew J.
    Wu, Guoyuan
    Boriboonsomsin, Kanok
    Wang, Peng
    ROAD VEHICLE AUTOMATION 4, 2018, : 97 - 111
  • [7] Distributed Eco-Driving Control of a Platoon of Electric Vehicles Through Riccati Recursion
    Lacombe, Remi
    Gros, Sebastien
    Murgovski, Nikolce
    Kulcsar, Balazs
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (03) : 3048 - 3063
  • [8] Model-Based Reinforcement Learning for Eco-Driving Control of Electric Vehicles
    Lee, Heeyun
    Kim, Namwook
    Cha, Suk Won
    IEEE ACCESS, 2020, 8 : 202886 - 202896
  • [9] The eco-driving effect of electric vehicles compared to conventional gasoline vehicles
    Kato, Hideki
    Ando, Ryosuke
    Kondo, Yoshinori
    Suzuki, Tsutomu
    Matsuhashi, Keisuke
    Kobayashi, Shinji
    AIMS ENERGY, 2016, 4 (06) : 804 - 816
  • [10] Design and experimental validation of eco-driving system for connected and automated electric vehicles
    Luo, Xi
    Cheng, Yifan
    Hong, Jinlong
    Dong, Shiying
    Na, Xiaoxiang
    Gao, Bingzhao
    Chen, Hong
    CONTROL ENGINEERING PRACTICE, 2025, 154