Regularization method for an ill-posed Cauchy problem for elliptic equations
被引:4
|
作者:
Benrabah, Abderafik
论文数: 0引用数: 0
h-index: 0
机构:
Univ 8 Mai 1945, POB 401, Guelma 24000, Algeria
Univ Badji Mokhtar, Appl Math Lab, POB 12, Annaba 23000, AlgeriaUniv 8 Mai 1945, POB 401, Guelma 24000, Algeria
Benrabah, Abderafik
[1
,2
]
论文数: 引用数:
h-index:
机构:
Boussetila, Nadjib
[1
,2
]
Rebbani, Faouzia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Badji Mokhtar, Appl Math Lab, POB 12, Annaba 23000, AlgeriaUniv 8 Mai 1945, POB 401, Guelma 24000, Algeria
Rebbani, Faouzia
[2
]
机构:
[1] Univ 8 Mai 1945, POB 401, Guelma 24000, Algeria
[2] Univ Badji Mokhtar, Appl Math Lab, POB 12, Annaba 23000, Algeria
Inverse problems;
ill-posed problems;
regularization;
nonlocal boundary value problems;
theoretical approximation of solutions;
TIKHONOV REGULARIZATION;
PARAMETERS;
MODEL;
D O I:
10.1515/jiip-2015-0075
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The paper is devoted to investigating a Cauchy problem for homogeneous elliptic PDEs in the abstract Hilbert space given by u" (t) - Au( t) = 0, 0 < t < T, u(0) = phi, u' (0) = 0, where A is a positive self-adjoint and unbounded linear operator. The problem is severely ill-posed in the sense of Hadamard [23]. We shall give a new regularization method for this problem when the operator A is replaced by A alpha = A( I + alpha A)(-1) and u(0) = phi is replaced by a nonlocal condition. We show the convergence of this method and we construct a family of regularizing operators for the considered problem. Convergence estimates are established under a priori regularity assumptions on the problem data. Some numerical results are given to show the effectiveness of the proposed method.
机构:
St. Petersburg Department of V. A. Steklov Mathematical Institute, St. PetersburgSt. Petersburg Department of V. A. Steklov Mathematical Institute, St. Petersburg
Demchenko M.N.
Filimonenkova N.V.
论文数: 0引用数: 0
h-index: 0
机构:
Peter the Great Saint-Petersburg Polytechnic University, St. PetersburgSt. Petersburg Department of V. A. Steklov Mathematical Institute, St. Petersburg