Moving-horizon State Estimation with Gross Error Detection for a Hydroformylation Mini-plant

被引:2
|
作者
Hoffmann, Christian [1 ]
Illner, Markus [1 ]
Mueller, David [2 ]
Esche, Erik [1 ]
Wozny, Guenter [1 ]
Biegler, Lorenz T. [3 ]
Repke, Jens-Uwe [4 ]
机构
[1] Tech Univ Berlin, Proc Dynam & Operat Grp, Sekretariat KWT 9, D-10623 Berlin, Germany
[2] Evonik Technol & Infrastruct GmbH, Proc Technol & Engn, CAPE & Automat, Paul Baumann Str 1, D-45772 Marl, Germany
[3] Carnegie Mellon Univ, Dept Chem Engn, Doherty Hall,5000 Forbes Ave, Pittsburgh, PA 15213 USA
[4] Tech Univ Bergakad Freiberg, Inst Therm Vetfahrenstech Umwelt & Nat Stoffverfa, Sekretariat RAM 126, Leipziger Str 28, D-09596 Freiberg, Germany
关键词
Real-time Optimization; Hydroformylation; State Estimation; Mini-plant; NONLINEAR-PROGRAMMING SENSITIVITY;
D O I
10.1016/B978-0-444-63428-3.50252-6
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This contribution discusses and compares the implementation of moving-horizon (MHE) and advanced step moving-horizon state estimation (asMHE) for the hydroformylation mini-plant at Technische Universitat Berlin as part of the Collaborative Research Center InPROMPT. Moreover, robust estimators are used to reduce the impact of gross error on the estimated states. The advantage to solve the state estimation problem offline with asMHE makes it a suitable method to complement real-time optimization in the future.
引用
收藏
页码:1485 / 1490
页数:6
相关论文
共 50 条
  • [1] Moving-horizon Guaranteed Parameter Estimation: Influence of the Measurement Error
    Valiauga, Petra
    Paulen, Radoslav
    PROCEEDINGS OF THE 2019 22ND INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC19), 2019, : 256 - 261
  • [2] A parametric programming approach to moving-horizon state estimation
    Darby, Mark L.
    Nikolaou, Michael
    AUTOMATICA, 2007, 43 (05) : 885 - 891
  • [3] Moving-horizon Guaranteed Parameter Estimation
    Artzova, Petra
    Paulen, Radoslav
    IFAC PAPERSONLINE, 2019, 52 (01): : 112 - 117
  • [4] Moving-Horizon State Estimation for Nonlinear Systems Using Neural Networks
    Alessandri, Angelo
    Baglietto, Marco
    Battistelli, Giorgio
    Gaggero, Mauro
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (05): : 768 - 780
  • [5] Moving-horizon State Estimation for Nonlinear Systems using Neural Networks
    Alessandri, A.
    Baglietto, M.
    Battistelli, G.
    Zoppoli, R.
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 2557 - 2562
  • [6] Performance-Specified Moving-Horizon State Estimation With Minimum Risk
    Aghapour, Elahe
    Farrell, Jay A.
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 2818 - 2823
  • [7] On Observability and Stability of Moving-Horizon Estimation in a Distributional Framework
    Krishnan, Vishaal
    Martinez, Sonia
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 459 - 464
  • [8] Moving-Horizon Dynamic Power System State Estimation Using Semidefinite Relaxation
    Wang, Gang
    Kim, Seung-Jun
    Giannakis, Georgios B.
    2014 IEEE PES GENERAL MEETING - CONFERENCE & EXPOSITION, 2014,
  • [9] Moving-horizon partition-based state estimation of large-scale systems
    Farina, Marcello
    Ferrari-Trecate, Giancarlo
    Scattolini, Riccardo
    AUTOMATICA, 2010, 46 (05) : 910 - 918
  • [10] Efficient Hardware Implementation of Nonlinear Moving-horizon State Estimation with Artificial Neural Networks
    Vatanabe Brunello, Rafael Koji
    Sampaio, Renato Coral
    Llanos, Carlos H.
    Coelho, Leandro dos Santos
    Hultmann Ayala, Helon Vicente
    IFAC PAPERSONLINE, 2020, 53 (02): : 7813 - 7818