SPARSE MULTIRESOLUTION REGRESSION FOR UNCERTAINTY PROPAGATION

被引:13
|
作者
Schiavazzi, Daniele [1 ]
Doostan, Alireza [2 ]
Iaccarino, Gianluca [3 ]
机构
[1] Univ Calif San Diego, Dept Aerosp Engn & Mech, La Jolla, CA 92093 USA
[2] Univ Colorado, Aerosp Engn Sci Dept, Boulder, CO 80309 USA
[3] Stanford Univ, Dept Engn Mech, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
uncertainty quantification; multiresolution approximation; compressive sampling; adaptive importance sampling; tree-based orthogonal matching pursuit; uncertain tuned mass damper; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; POLYNOMIAL CHAOS; SIGNAL RECOVERY; APPROXIMATION; BASES; MINIMIZATION; SYSTEMS;
D O I
10.1615/Int.J.UncertaintyQuantification.2014010147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work proposes a novel nonintrusive, i.e., sampling-based, framework for approximating stochastic solutions of interest admitting sparse multiresolution expansions. The coefficients of such expansions are computed via greedy approximation techniques that require a number of solution realizations smaller than the cardinality of the multiresolution basis. The effect of various random sampling strategies is investigated. The proposed methodology is verified on a number of benchmark problems involving nonsmooth stochastic responses, and is applied to quantifying the efficiency of a passive vibration control system operating under uncertainty.
引用
收藏
页码:303 / 331
页数:29
相关论文
共 50 条
  • [1] A sparse multiresolution stochastic approximation for uncertainty quantification
    Schiavazzi, D.
    Doostan, A.
    Iaccarino, G.
    RECENT ADVANCES IN SCIENTIFIC COMPUTING AND APPLICATIONS, 2013, 586 : 295 - +
  • [2] A new sparse grid based method for uncertainty propagation
    Xiong, Fenfen
    Greene, Steven
    Chen, Wei
    Xiong, Ying
    Yang, Shuxing
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2010, 41 (03) : 335 - 349
  • [3] Uncertainty propagation analysis by an extended sparse grid technique
    Jia, X. Y.
    Jiang, C.
    Fu, C. M.
    Ni, B. Y.
    Wang, C. S.
    Ping, M. H.
    FRONTIERS OF MECHANICAL ENGINEERING, 2019, 14 (01) : 33 - 46
  • [4] A new sparse grid based method for uncertainty propagation
    Fenfen Xiong
    Steven Greene
    Wei Chen
    Ying Xiong
    Shuxing Yang
    Structural and Multidisciplinary Optimization, 2010, 41 : 335 - 349
  • [5] Uncertainty propagation analysis by an extended sparse grid technique
    X. Y. Jia
    C. Jiang
    C. M. Fu
    B. Y. Ni
    C. S. Wang
    M. H. Ping
    Frontiers of Mechanical Engineering, 2019, 14 : 33 - 46
  • [6] A NEW SPARSE GRID BASED METHOD FOR UNCERTAINTY PROPAGATION
    Xiong, Fenfen
    Xiong, Ying
    Greene, Steven
    Chen, Wei
    Yang, Shuxing
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 5, PTS A AND B: 35TH DESIGN AUTOMATION CONFERENCE, 2010, : 1205 - 1215
  • [7] SPARSE GRID-BASED ORBIT UNCERTAINTY PROPAGATION
    Nevels, Matthew D.
    Jia, Bin
    Turnowicz, Matthew R.
    Xin, Ming
    Cheng, Yang
    ASTRODYNAMICS 2011, PTS I - IV, 2012, 142 : 3207 - 3226
  • [8] Omnidirectional Localization in vSLAM with Uncertainty Propagation and Bayesian Regression
    Valiente, David
    Reinoso, Oscar
    Gil, Arturo
    Paya, Luis
    Ballesta, Monica
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS (ACIVS 2017), 2017, 10617 : 263 - 274
  • [9] UNCERTAINTY PROPAGATION FROM ATMOSPHERIC PARAMETERS TO SPARSE HYPERSPECTRAL UNMIXING
    Iordache, Marian-Daniel
    Bhatia, Nitin
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6133 - 6136
  • [10] Confidence Propagation through CNNs for Guided Sparse Depth Regression
    Eldesokey, Abdelrahman
    Felsberg, Michael
    Khan, Fahad Shahbaz
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (10) : 2423 - 2436