Scalable video visual analytics

被引:13
|
作者
Hoeferlin, Benjamin [1 ]
Hoeferlin, Markus [2 ]
Heidemann, Gunther [1 ]
Weiskopf, Daniel [2 ]
机构
[1] Univ Osnabruck, D-49076 Osnabruck, Germany
[2] Univ Stuttgart, D-70174 Stuttgart, Germany
关键词
Visual analytics; video analysis; VAST Challenge 2009; scalability; situational awareness; FAST-FORWARD; RETRIEVAL; VISUALIZATION; FRAMEWORK; NEWS;
D O I
10.1177/1473871613488571
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Video visual analytics is the research field that addresses scalable and reliable analysis of video data. The vast amount of video data in typical analysis tasks renders manual analysis by watching the video data impractical. However, automatic evaluation of video material is not reliable enough, especially when it comes to semantic abstraction from the video signal. In this article, we describe the video visual analytics method that combines the complementary strengths of human recognition and machine processing. After inspecting the challenges of scalable video analysis, we derive the main components of visual analytics for video data. Based on these components, we present our video visual analytics system that has its origins in our IEEE VAST Challenge 2009 participation.
引用
收藏
页码:10 / 26
页数:17
相关论文
共 50 条
  • [1] Towards Scalable Video Analytics at the Edge
    Stone, Theodore
    Stone, Nathaniel
    Jain, Puneet
    Jiang, Yurong
    Kim, Kyu-Han
    Nelakuditi, Srihari
    2019 16TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON SENSING, COMMUNICATION, AND NETWORKING (SECON), 2019,
  • [2] Chameleon: Scalable Adaptation of Video Analytics
    Jiang, Junchen
    Ananthanarayanan, Ganesh
    Bodik, Peter
    Sen, Siddhartha
    Stoica, Ion
    PROCEEDINGS OF THE 2018 CONFERENCE OF THE ACM SPECIAL INTEREST GROUP ON DATA COMMUNICATION (SIGCOMM '18), 2018, : 253 - 266
  • [3] A Graph Algebra for Scalable Visual Analytics
    Shaverdian, Anna A.
    Zhou, Hao
    Michailidis, George
    Jagadish, Hosagrahar V.
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2012, 32 (04) : 26 - 33
  • [4] Visual analytics for video applications
    Tanisaro, Pattreeya
    Schoening, Julius
    Kurzhals, Kuno
    Heidemann, Gunther
    Weiskopf, Daniel
    IT-INFORMATION TECHNOLOGY, 2015, 57 (01): : 30 - 36
  • [5] Visualization Viewpoints Sampling for Scalable Visual Analytics
    Kwon, Bum Chul
    Verma, Janu
    Haas, Peter J.
    Demiralp, Cagatay
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2017, 37 (01) : 100 - 108
  • [6] Dynamic layout of visual summaries for scalable video
    Calic, Janko
    Mrak, Marla
    Kondoz, Ahrnet
    2008 INTERNATIONAL WORKSHOP ON CONTENT-BASED MULTIMEDIA INDEXING, 2008, : 30 - 34
  • [7] AGAMI: Scalable Visual Analytics over Multidimensional Data Streams
    Lu, Mingxin
    Wong, Edmund
    Barajas, Daniel
    Li, Xiaochen
    Ogundipe, Mosopefoluwa
    Wilson, Nate
    Garg, Pragya
    Joshi, Alark
    Malensek, Matthew
    2020 IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES (BDCAT 2020), 2020, : 57 - 66
  • [8] Split Computing With Scalable Feature Compression for Visual Analytics on the Edge
    Yuan, Zhongzheng
    Rawlekar, Samyak
    Garg, Siddharth
    Erkip, Elza
    Wang, Yao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 10121 - 10133
  • [9] Visual Analytics and Annotation of Pervasive Eye Tracking Video
    Kurzhals, Kuno
    Rodrigues, Nils
    Koch, Maurice
    Stoll, Michael
    Bruhn, Andres
    Bulling, Andreas
    Weiskopf, Daniel
    ETRA'20 FULL PAPERS: ACM SYMPOSIUM ON EYE TRACKING RESEARCH AND APPLICATIONS, 2020,
  • [10] VideoPro: A Visual Analytics Approach for Interactive Video Programming
    He, Jianben
    Wang, Xingbo
    Wong, Kam Kwai
    Huang, Xijie
    Chen, Changjian
    Chen, Zixin
    Wang, Fengjie
    Zhu, Min
    Qu, Huamin
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (01) : 87 - 97