Measurements of CO2 sorption on rocks using a volumetric technique for CO2 geological storage

被引:3
|
作者
Fujii, Takashi [1 ]
Sugai, Yuichi [2 ]
Sasaki, Kyuro [2 ]
Hashida, Toshiyuki [1 ]
机构
[1] Tohoku Univ, Fracture & Reliabil Res Inst, Aoba Ku, 6-6-11-707 Aoba, Sendai, Miyagi 9808579, Japan
[2] Kyushu Univ, Dept Earth Resources Engn, Fac Engn, Nishi Ku, Fukuoka 8190385, Japan
来源
关键词
CO2; sorption; Sorption capacity; isotherm; Sandstone; Granite; Volumetric technique; CO2 geological storage; CARBON-DIOXIDE; PRESSURES; COALS;
D O I
10.1016/j.egypro.2009.02.170
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In order to predict CO2 storage potential of candidate geological reservoirs, this study investigated the CO2 sorption capacity of sandstone and granite under air-dry and water-saturated conditions using a volumetric technique, at temperatures of 33, 40, and 50 degrees C and pressures up to 20MPa. The sandstone and granite have the potential to sorb CO2 under the both conditions. A comparison with model predictions (monolayer adsorption, solubility and pore-filling models) indicated that the sorption of CO2 onto rock minerals offers an important mechanism for the CO2-rock interactions which may take place in the course of CO2 injection. (C) 2008 Elsevier Ltd. All rights reserved
引用
收藏
页码:3715 / 3722
页数:8
相关论文
共 50 条
  • [1] Evaluation of CO2 sorption capacity of rocks using a gravimetric method for CO2 geological sequestration
    Fujii, Takashi
    Sato, Yoshiyuki
    Lin, Hongfei
    Inomata, Hiroshi
    Hashida, Toshiyuki
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 3723 - 3730
  • [2] Density Measurements of Supercritical CO2 + Dagang Brine for CO2 Geological Storage
    Zhang, Yi
    Shen, Yong
    Song, Yongchen
    Zhan, Yangchun
    Nishio, Masahiro
    Jian, Weiwei
    Xing, Wanli
    Hu, Cheng
    GHGT-11, 2013, 37 : 5620 - 5627
  • [3] Evaluation of CO2 sorption capacity of granite for CO2 geological sequestration
    Fujii, T.
    Sato, Y.
    Lin, H.
    Sasaki, K.
    Takahashi, T.
    Inoniatat, H.
    Hashida, T.
    WATER DYNAMICS, 2007, 898 : 79 - +
  • [4] CO2 Geological Storage and Utilization
    Huang, Liang
    ATMOSPHERE, 2023, 14 (07)
  • [5] Review of the CO2 Geological Storage Using Nanoparticle-stabilized CO2 Foam
    Son, Han Am
    ECONOMIC AND ENVIRONMENTAL GEOLOGY, 2020, 53 (02): : 213 - 220
  • [6] Risk of CO2 Geological Storage
    Uliasz-Misiak, Barbara
    ROCZNIK OCHRONA SRODOWISKA, 2008, 10 : 623 - 632
  • [7] CO2 geological storage economics
    Allinson, G
    Nguyen, V
    GREENHOUSE GAS CONTROL TECHNOLOGIES, VOLS I AND II, PROCEEDINGS, 2003, : 615 - 620
  • [8] An assessment of Queensland's CO2 geological storage prospectivity - the Queensland CO2 Geological Storage Atlas
    Bradshaw, Barry E.
    Spencer, Lynton K.
    Lahtinen, Anna-Liisa
    Khider, Kamal
    Ryan, Damien J.
    Colwell, Jim B.
    Chirinos, Alfredo
    Bradshaw, John
    Draper, John J.
    Hodgkinson, Jonathan
    McKillop, Mike
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 4583 - 4590
  • [9] Leakage Mitigation During CO2 Geological Storage Process Using CO2 Triggered Gelation
    Li, Dexiang
    Zhang, Liang
    Ren, Shaoran
    Rui, Hongxing
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (08) : 3395 - 3406
  • [10] On the estimation of CO2 capillary entry pressure: Implications on geological CO2 storage
    Zhou, Yingfang
    Hatzignatiou, Dimitrios G.
    Helland, Johan O.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2017, 63 : 26 - 36