On Cohen Braids

被引:4
|
作者
Bardakov, V. G. [1 ,2 ,3 ]
Vershinin, V. V. [1 ,3 ,4 ]
Wu, J. [5 ]
机构
[1] Russian Acad Sci, Sobolev Inst Math, Siberian Branch, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Chelyabinsk State Univ, Lab Quantum Topol, Chelyabinsk 454001, Russia
[4] Univ Montpellier 2, Dept Math Sci, F-34095 Montpellier 5, France
[5] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
基金
俄罗斯基础研究基金会; 中国国家自然科学基金;
关键词
Exact Sequence; STEKLOV Institute; Short Exact Sequence; Braid Group; Link Group;
D O I
10.1134/S0081543814060029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a general connected surface M and an arbitrary braid a from the surface braid group Bn-1(M), we study the system of equations d(1)beta = ... = d(n)beta = alpha, where the operation d(i) is the removal of the ith strand. We prove that for M not equal S-2 and M not equal P-2, this system of equations has a solution beta is an element of B-n (M) if and only if d(1)alpha = ... = d(n-1)alpha. We call the set of braids satisfying the last system of equations Cohen braids. We study Cohen braids and prove that they form a subgroup. We also construct a set of generators for the group of Cohen braids. In the cases of the sphere and the projective plane we give some examples for a small number of strands.
引用
收藏
页码:16 / 32
页数:17
相关论文
共 50 条
  • [1] On Cohen braids
    V. G. Bardakov
    V. V. Vershinin
    J. Wu
    Proceedings of the Steklov Institute of Mathematics, 2014, 286 : 16 - 32
  • [2] ON REDUCIBLE BRAIDS AND COMPOSITE BRAIDS
    HUMPHRIES, SP
    GLASGOW MATHEMATICAL JOURNAL, 1994, 36 : 197 - 199
  • [3] On groups Gnk, braids and Brunnian braids
    Kim, S.
    Manturov, V. O.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2016, 25 (13)
  • [4] Braids
    Tada, M
    SEN-I GAKKAISHI, 2002, 58 (01) : P15 - P19
  • [5] 'BRAIDS'
    KITTELL, L
    NEW ENGLAND REVIEW-MIDDLEBURY SERIES, 1994, 16 (01): : 119 - 119
  • [6] 'BRAIDS'
    DISKIN, L
    COLLEGE ENGLISH, 1982, 44 (05) : 491 - 492
  • [7] 'BRAIDS'
    FINKELSTEIN, N
    SALMAGUNDI-A QUARTERLY OF THE HUMANITIES AND SOCIAL SCIENCES, 1986, (72): : 176 - 177
  • [8] An elementary proof that classical braids embed in virtual braids
    V. O. Manturov
    Doklady Mathematics, 2016, 94 : 441 - 444
  • [9] Contributions on theory of braids. Special group of braids
    Froehlich, W.
    MATHEMATISCHE ANNALEN, 1938, 115 : 412 - 434
  • [10] Milnor invariants of braids and welded braids up to homotopy
    Darne, Jacques
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (03): : 1277 - 1320