On the dressing action of loop groups on constant mean curvature surfaces

被引:4
|
作者
Wu, HY [1 ]
机构
[1] No Illinois Univ, Dept Math, De Kalb, IL 60115 USA
关键词
D O I
10.2748/tmj/1178225065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with the question of whether the Hopf differential on constant mean curvature surfaces parameterizes the dressing orbits of these surfaces. It is shown that in addition to the Hopf differential, there are infinitely many dressing invariants associated with an umbilic point of order larger than or equal to 2. Thus, when such an umbilic point is present, there are many dressing orbits sharing the same Hopf differential. We also give a procedure for computing all these dressing invariants associated with an umbilic point and they are used to show that the sizes of the dressing orbits in general depend on the topology on the loop group used.
引用
收藏
页码:599 / 621
页数:23
相关论文
共 50 条
  • [1] Investigation and application of the dressing action on surfaces of constant mean curvature
    Dorfmeister, J
    Haak, G
    QUARTERLY JOURNAL OF MATHEMATICS, 2000, 51 : 57 - 73
  • [2] CONSTANT MEAN-CURVATURE SURFACES AND LOOP-GROUPS
    DORFMEISTER, J
    WU, HY
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1993, 440 : 43 - 76
  • [3] Constant mean curvature surfaces in hyperbolic 3-space via loop groups
    Dorfmeister, Josef F.
    Inoguchi, Jun-ichi
    Kobayashi, Shimpei
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 686 : 1 - 36
  • [4] Constant mean curvature surfaces in metric Lie groups
    Meeks, William H., III
    Perez, Joaquin
    GEOMETRIC ANALYSIS: PARTIAL DIFFERENTIAL EQUATIONS AND SURFACES, 2012, 570 : 25 - +
  • [5] Darboux transforms and simple factor dressing of constant mean curvature surfaces
    F. E. Burstall
    J. F. Dorfmeister
    K. Leschke
    A. C. Quintino
    Manuscripta Mathematica, 2013, 140 : 213 - 236
  • [6] Darboux transforms and simple factor dressing of constant mean curvature surfaces
    Burstall, F. E.
    Dorfmeister, J. F.
    Leschke, K.
    Quintino, A. C.
    MANUSCRIPTA MATHEMATICA, 2013, 140 (1-2) : 213 - 236
  • [7] SURFACES WITH CONSTANT MEAN CURVATURE
    HILDERBR.S
    MATHEMATISCHE ZEITSCHRIFT, 1969, 112 (02) : 107 - &
  • [8] SURFACES OF CONSTANT MEAN CURVATURE
    WOLF, JA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 17 (05) : 1103 - &
  • [9] Surfaces with constant mean curvature
    Perdomol, Oscar M.
    BOLETIN DE MATEMATICAS, 2011, 18 (02): : 157 - 182
  • [10] Constant mean curvature surfaces
    Meeks, William H., III
    Perez, Joaquin
    Tinaglia, Giuseppe
    ADVANCES IN GEOMETRY AND MATHEMATICAL PHYSICS, 2016, 21 : 179 - +