Speech enhancement using band-dependent spectral estimators

被引:0
|
作者
Potamitis, Y [1 ]
Fakotakis, N [1 ]
Kokkinakis, G [1 ]
机构
[1] Univ Patras, Dept Elect & Comp Engn, Wire Commun Lab, GR-26110 Patras, Greece
来源
关键词
speech enhancement; Map estimation; signal reconstruction; digital signal processing;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Our work introduces a speech enhancement algorithm that modifies on-line the spectral representation of degraded speech to approximate the spectral coefficients of high quality speech. The proposed framework is based on the application of Discrete Fourier Transform (DFT) to a large ensemble of clean speech frames and the estimation of parametric, heavy-tail non-Gaussian probability distributions for the spectral magnitude. Each clean spectral band possesses a unique pdf. This is selected according to the smallest Kullback-Leibler divergence between each candidate heavy-tail pdf and the non-parametric pdf of the magnitude of each spectral band of the clean ensemble. The parameters of the distributions are derived by Maximum Likelihood Estimation (MLE). A maximum a-posteriori (MAP) formulation of the degraded spectral bands leads to soft threshold functions, optimally derived from the statistics of each spectral band and effectively reducing white and slowly varying coloured Gaussian noise. We evaluate the new algorithm on the task of improving the quality of speech perception as well as Automatic Speech Recognition (ASR) and demonstrate its robustness at SNRs as low as 0 dB.
引用
收藏
页码:937 / 946
页数:10
相关论文
共 50 条
  • [1] Speech enhancement with adaptive spectral estimators
    Sandoval-Ibarra, Y.
    Diaz-Ramirez, V. H.
    Kober, V. I.
    Karnaukhov, V. N.
    [J]. JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2016, 61 (06) : 672 - 678
  • [2] Speech enhancement with adaptive spectral estimators
    Y. Sandoval-Ibarra
    V. H. Diaz-Ramirez
    V. I. Kober
    V. N. Karnaukhov
    [J]. Journal of Communications Technology and Electronics, 2016, 61 : 672 - 678
  • [3] Generalized Bayesian Estimators of the Spectral Amplitude for Speech Enhancement
    Plourde, Eric
    Champagne, Benoit
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (06) : 485 - 488
  • [4] Auditory-Based Spectral Amplitude Estimators for Speech Enhancement
    Plourde, Eric
    Champagne, Benoit
    [J]. IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2008, 16 (08): : 1614 - 1623
  • [5] Multidimensional STSA Estimators for Speech Enhancement With Correlated Spectral Components
    Plourde, Eric
    Champagne, Benoit
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (07) : 3013 - 3024
  • [6] Local spectral attention for full-band speech enhancement
    Hou, Zhongshu
    Hu, Qinwen
    Chen, Kai
    Cao, Zhanzhong
    Lu, Jing
    [J]. JASA EXPRESS LETTERS, 2023, 3 (11):
  • [7] Band-dependent emergence of heavy quasiparticles in CeCoIn5
    Koitzsch, A.
    Kim, T. K.
    Treske, U.
    Knupfer, M.
    Buechner, B.
    Richter, M.
    Opahle, I.
    Follath, R.
    Bauer, E. D.
    Sarrao, J. L.
    [J]. PHYSICAL REVIEW B, 2013, 88 (03)
  • [8] Speech enhancement using Bayesian estimators of the perceptually-motivated short-time spectral amplitude (STSA) with Chi speech priors
    Trawicki, Marek B.
    Johnson, Michael T.
    [J]. SPEECH COMMUNICATION, 2014, 57 : 101 - 113
  • [9] Enhancement of alaryngeal speech using spectral subtraction
    Pandey, PC
    Bhandarkar, SM
    Bachher, GK
    Lehana, PK
    [J]. DSP 2002: 14TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2, 2002, : 591 - 594
  • [10] Speech enhancement using local spectral regularization
    Sandoval-Ibarra, Yuma
    Diaz-Ramirez, Victor H.
    Kober, Vitaly
    Diaz, Arnoldo
    [J]. OPTICS AND PHOTONICS FOR INFORMATION PROCESSING X, 2016, 9970