HIGH-FREQUENCY ACOUSTIC MODE IDENTIFICATION OF UNSTABLE COMBUSTORS

被引:0
|
作者
Kim, J. [1 ]
Lieuwen, T. [1 ]
Emerson, B. [1 ]
Acharya, V. [1 ]
Wu, D. [1 ]
Mckinney, R. [1 ]
Wang, X. [1 ]
Isono, M. [2 ]
机构
[1] Georgia Inst Technol, Ben T Zinn Combust Lab, Atlanta, GA 30332 USA
[2] Mitsubishi Heavy Ind Co Ltd, Takasago, Hyogo, Japan
关键词
INSTABILITIES;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
High frequency thermoacoustic instabilities are becoming increasingly problematic in modern combustion systems. Understanding which acoustic mode is being excited is important for understanding potential mechanisms and control approaches for example, influence of a helical shear layer mode on the flame has profoundly different effects on the first tangential acoustic mode, than a higher order axial mode of similar frequency. Nonetheless, the modal density increases with frequency and it becomes increasingly difficult to determine which acoustic mode is self-excited, based upon frequency calculations alone. Moreover, access issues and cost usually limit the number of pressure probes that can be distributed axially and azimuthally in the combustor. This paper presents a methodology for identifying the acoustic mode by using high temperature pressure transducers flush mounted in a combustion chamber. Modal identification is demonstrated with a siren under non-reacting conditions. The siren is mounted on the chamber to excite longitudinal and azimuthal waves. Five acoustic sensors at different axial and azimuthal locations measure the pressure fluctuations simultaneously. Given the forcing frequency and the speed of sound, the pressure distribution in the combustor is reconstructed in the time domain from the measured data by using a least squares method to determine its mode shapes. In addition, the finite element method (FEM) solver is used to provide the eigenfrequen-cies and corresponding mode shapes. The test results demonstrate that the mode shapes from the reconstructed data and corresponding frequencies are consistent with those predicted from the FEM, which validates the methodology in this study. In addition, the methodology is extended to practical reacting cases without the siren to determine the acoustic mode shapes of naturally occurring instabilities. In these cases, the modal features have strong stochastic features, such as what appear to be stochastic variations in overall amplitude and relative amplitudes of clockwise and counterclockwise waves.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] IDENTIFICATION OF HIGH-FREQUENCY TRANSVERSE ACOUSTIC MODES IN MULTI-NOZZLE CAN COMBUSTORS
    Kim, J.
    Gillman, W.
    Wu, D.
    Emerson, B.
    Acharya, V.
    Mckinney, R.
    Lieuwen, T.
    Isono, M.
    Saitoh, T.
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 4C, 2020,
  • [2] High-Frequency Acoustooptical Modulator with Acoustic Mode Conversion
    V. M. Epikhin
    L. L. Paltsev
    [J]. Bulletin of the Lebedev Physics Institute, 2023, 50 : S233 - S239
  • [3] High-Frequency Acoustooptical Modulator with Acoustic Mode Conversion
    Epikhin, V. M.
    Paltsev, L. L.
    [J]. BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2023, 50 (SUPPL 2) : S233 - S239
  • [4] A MECHANISM FOR HIGH-FREQUENCY OSCILLATION IN RAMJET COMBUSTORS AND AFTERBURNERS
    ROGERS, DE
    MARBLE, FE
    [J]. JET PROPULSION, 1956, 26 (06): : 456 - 464
  • [5] HIGH-FREQUENCY CONDUCTIVITY OF AN UNSTABLE PLASMA
    BERTOTTI, B
    DEBARBIE.
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (02): : 283 - &
  • [6] High-frequency vector harmonic mode locking driven by acoustic resonances
    Kbashi, H. J.
    Sergeyev, S., V
    Al-Araimi, M.
    Rozhin, A.
    Korobko, D.
    Fotiadi, A.
    [J]. OPTICS LETTERS, 2019, 44 (21) : 5112 - 5115
  • [7] HIGH-FREQUENCY ACOUSTIC PLATE MODE DEVICE EMPLOYING INTERDIGITAL TRANSDUCERS
    LEWIS, MF
    [J]. ELECTRONICS LETTERS, 1981, 17 (21) : 819 - 821
  • [8] High-frequency acoustic noise of lake baikal High-frequency acoustic noise of Lake Baikal
    Ainutdinov, V. M.
    Balkanov, V. A.
    Belolaptikov, I. A.
    Bezrukov, L. B.
    Budnev, N. M.
    Vasil'ev, R. V.
    Wischnewski, R.
    Gaponenko, O. N.
    Gnatovskii, R. Yu.
    Gress, O. A.
    Gress, T. I.
    Grishin, O. G.
    Danil'chenko, I. A.
    Dzhilkibaev, Zh. -A. M.
    Doroshenko, A. A.
    Dyachok, A. N.
    Domogatskii, G. V.
    Zhukov, V. A.
    Klabukov, A. M.
    Klimov, A. I.
    Klimushin, S. I.
    Konishchev, K. V.
    Kochanov, A. A.
    Koshechkin, A. P.
    Kulepov, V. F.
    Kuz'michev, L. A.
    Lubsandorzhiev, B. K.
    Mikolajskii, T.
    Milenin, M. B.
    Mirgazov, R. R.
    Mikheev, S. P.
    Osipova, E. A.
    Panfilov, A. I.
    Pavlov, A. A.
    Pan'kov, G. L.
    Pan'kov, L. V.
    Pliskovskii, E. N.
    Poleshchuk, V. A.
    Popova, E. G.
    Pokhil, P. G.
    Prosin, V. V.
    Rozanov, M. I.
    Rubtsov, V. Yu.
    Tarashchanskii, B. A.
    Fialkovskii, S. V.
    Chenskii, A. G.
    Shaibonov, B. A.
    Spiering, Ch.
    Streicher, O.
    Yashin, I. V.
    [J]. ACOUSTICAL PHYSICS, 2006, 52 (05) : 495 - 504
  • [9] Temperature coefficient of the high-frequency guided acoustic mode in a photonic crystal fiber
    Carry, Emile
    Beugnot, Jean-Charles
    Stiller, Birgit
    Lee, Min W.
    Maillotte, Herve
    Sylvestre, Thibaut
    [J]. APPLIED OPTICS, 2011, 50 (35) : 6543 - 6547
  • [10] Simulation study of high-frequency energetic particle driven geodesic acoustic mode
    Wang, Hao
    Todo, Yasushi
    Ido, Takeshi
    Osakabe, Masaki
    [J]. PHYSICS OF PLASMAS, 2015, 22 (09)