Novel Materials for 3D Printing by Photopolymerization

被引:416
|
作者
Layani, Michael [1 ]
Wang, Xiaofeng [2 ]
Magdassi, Shlomo [3 ]
机构
[1] Singapore HUJ Alliance Res & Enterprise, Campus Res Excellence & Technol Enterprise CREATE, Nanomat Energy & Water Management, Singapore 138602, Singapore
[2] Cent S Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[3] Hebrew Univ Jerusalem, Ctr Nanosci & Nanotechnol, Casali Ctr Appl Chem, Inst Chem, IL-9190401 Jerusalem, Israel
基金
新加坡国家研究基金会;
关键词
3D printing; additive manufacturing; ceramics; functional printing; photoinitiators; photopolymers; UV curable inks; SHAPE-MEMORY POLYMERS; STEREOLITHOGRAPHY; FABRICATION; CERAMICS;
D O I
10.1002/adma.201706344
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The field of 3D printing, also known as additive manufacturing (AM), is developing rapidly in both academic and industrial research environments. New materials and printing technologies, which enable rapid and multimaterial printing, have given rise to new applications and utilizations. However, the main bottleneck for achieving many more applications is the lack of materials with new physical properties. Here, some of the recent reports on novel materials in this field, such as ceramics, glass, shape-memory polymers, and electronics, are reviewed. Although new materials have been reported for all three main printing approaches-fused deposition modeling, binder jetting or laser sintering/melting, and photopolymerization-based approaches, apparently, most of the novel physicochemical properties are associated with materials printed by photopolymerization approaches. Furthermore, the high resolution that can be achieved using this type of 3D printing, together with the new properties, has resulted in new implementations such as microfluidic, biomedical devices, and soft robotics. Therefore, the focus here is on photopolymerization-based additive manufacturing including the recent development of new methods, novel monomers, and photoinitiators, which result in previously inaccessible applications such as complex ceramic structures, embedded electronics, and responsive 3D objects.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Photopolymerization in 3D Printing
    Bagheri, Ali
    Jin, Jianyong
    ACS APPLIED POLYMER MATERIALS, 2019, 1 (04): : 593 - 611
  • [2] From Grayscale Photopolymerization 3D Printing to Functionally Graded Materials
    Fei, Guanghai
    Parra-Cabrera, Cesar
    Zhong, Kuo
    Clays, Koen
    Ameloot, Rob
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (32)
  • [3] Photopolymerization 3D printing of luminescent ceramics
    Wang, Xuming
    Gao, Di
    Su, Fang
    Zheng, Yuantian
    Li, Xu
    Liu, Zhiyuan
    Liu, Changyong
    Wang, Pei
    Peng, Dengfeng
    Chen, Zhangwei
    ADDITIVE MANUFACTURING, 2023, 73
  • [4] 3D printing of optical materials by processes based on photopolymerization: materials,technologies, and recent advances
    EMMA GEISLER
    MAXIME LECOMPèRE
    OLIVIER SOPPERA
    Photonics Research, 2022, 10 (06) : 1344 - 1360
  • [5] 3D printing of optical materials by processes based on photopolymerization: materials, technologies, and recent advances
    Geisler, Emma
    Lecompere, Maxime
    Soppera, Olivier
    PHOTONICS RESEARCH, 2022, 10 (06) : 1344 - 1360
  • [6] Fundamentals and applications of 3D printing for novel materials
    Lee, Jian-Yuan
    An, Jia
    Chua, Chee Kai
    APPLIED MATERIALS TODAY, 2017, 7 : 120 - 133
  • [7] Warpage correction for vat photopolymerization 3D printing
    Lee, Taehyub
    Ng, Chin Siang
    Su, Pei-Chen
    ADDITIVE MANUFACTURING, 2025, 102
  • [8] Direct-print photopolymerization for 3D printing
    Vatani, Morteza
    Choi, Jae-Won
    RAPID PROTOTYPING JOURNAL, 2017, 23 (02) : 337 - 343
  • [9] Controlling photopolymerization reaction in layer-by-layer photopolymerization in 3D printing
    Allonas X.
    Hammouda B.
    Métral B.
    Goldbach E.
    Schuller A.-S.
    Ley C.
    Croutxé-Barghorn C.
    Applied Research, 2024, 3 (04):
  • [10] 3D Printing/Vat Photopolymerization of Photopolymers Activated by Novel Organic Dyes as Photoinitiators
    Sun, Ke
    Peng, Xiaotong
    Gan, Zengkang
    Chen, Wei
    Li, Xiaolin
    Gong, Tao
    Xiao, Pu
    CATALYSTS, 2022, 12 (10)