EEG mobility artifact removal for ambulatory epileptic seizure prediction applications

被引:27
|
作者
Islam, Md Shafiqul [1 ]
El-Hajj, Ahmad M. [2 ]
Alawieh, Hussein [1 ]
Dawy, Zaher [1 ]
Abbas, Nabil [3 ]
El-Imad, Jamil [4 ]
机构
[1] Amer Univ Beirut, Elect & Comp Engn Dept, Beirut, Lebanon
[2] Beirut Arab Univ, Elect & Comp Engn Dept, Beirut, Lebanon
[3] NeuroPro AG, Zurich, Switzerland
[4] Imperial Coll, Dept Elect & Elect Engn, London, England
关键词
Mobile health; EEG signal analysis; EEG mobility artifacts; Independent component analysis; Blind source separation; Epileptic seizure prediction; INDEPENDENT COMPONENT ANALYSIS;
D O I
10.1016/j.bspc.2019.101638
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Mobile monitoring of electroencephalogram (EEG) signals is prone to different sources of artifacts. Most importantly, motion-related artifacts present a major challenge hindering the clean acquisition of EEG data as they spread all over the scalp and across all frequency bands. This leads to additional complexity in the development of neurologically-oriented mobile health solutions. Among the top five most common neurological disorders, epilepsy has increasingly relied on EEG for diagnosis. Separate methods have been used to classify EEG segments in the context of epilepsy while reducing the existing mobility artifacts. This work specifically devises an approach to remove motion-related artifacts in the context of epilepsy. The proposed approach first includes the recording of EEG signals using a wearable EEG headset. The recorded signals are then colored by some motion artifacts generated in a lab-controlled experiment. This stage is followed by temporal and spectral characterization of the signals and artifact removal using independent component analysis (ICA). The proposed approach is tested using real clinical EEG data and results showed an average increase in accuracy of similar to 9% in seizure detection and similar to 24% in prediction. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Scanner artifact removal in simultaneous EEG-fMRI for epileptic seizure prediction
    Jing, Min
    Sanei, Saeid
    [J]. 18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS, 2006, : 722 - +
  • [2] Efficient EEG motion artifact elimination framework for ambulatory epileptic seizure detection application
    Krishna, Murali Y.
    Kumar, Vinay P.
    [J]. BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2024, 10 (03):
  • [3] EEG ANALYSIS AND EPILEPTIC SEIZURE PREDICTION
    VIGLIONE, SS
    WALSH, GO
    YEAGER, CL
    SPIRE, JP
    [J]. EPILEPSIA, 1977, 18 (02) : 289 - 289
  • [4] EPILEPTIC SEIZURE PREDICTION BY SCALP EEG ANALYSIS
    Kelly, Kevin M.
    Shiau, D.
    Kern, R. T.
    Chien, J. H.
    Pardalos, P. M.
    Valeriano, J. P.
    Halford, J. J.
    Sackellares, J. C.
    [J]. EPILEPSIA, 2009, 50 : 30 - 30
  • [5] Automatic Epileptic Seizure Prediction in Scalp EEG
    Mohan, Nirmal
    Shanir, Muhammed P. P.
    Sulthan, Noufal
    Sofiya, S.
    Khan, Kashif Ahmad
    [J]. 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT CIRCUITS AND SYSTEMS (ICICS 2018), 2018, : 275 - 280
  • [6] Epileptic Seizure Prediction by Scalp EEG Analysis
    Sackellares, J. Chris
    Shiau, Deng-Shan
    Chien, Jui-Hong
    Halford, Jonathan
    Kelly, Kevin M.
    [J]. ANNALS OF NEUROLOGY, 2009, 66 : S13 - S14
  • [7] A Study of EEG Feature Complexity in Epileptic Seizure Prediction
    Jemal, Imene
    Mitiche, Amar
    Mezghani, Neila
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (04): : 1 - 15
  • [8] Efficient Frameworks for EEG Epileptic Seizure Detection and Prediction
    Emara H.M.
    Elwekeil M.
    Taha T.E.
    El-Fishawy A.S.
    El-Rabaie E.-S.M.
    El-Shafai W.
    El Banby G.M.
    Alotaiby T.
    Alshebeili S.A.
    Abd El-Samie F.E.
    [J]. Annals of Data Science, 2022, 9 (02) : 393 - 428
  • [9] Epileptic seizure prediction using EEG peripheral channels
    Salvador, Carolina
    Felizardo, Virginie
    Zacarias, Henriques
    Souza-Pereira, Leonice
    Pourvahab, Mehran
    Pombo, Nuno
    Garcia, Nuno M.
    [J]. 2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG, 2023, : 60 - 63
  • [10] Comprehensive Analysis of EEG Datasets for Epileptic Seizure Prediction
    Rahman, Rihat
    Varnosfaderani, Shiva Maleki
    Makke, Omar
    Sarhan, Nabil J.
    Asano, Eishi
    Luat, Aimee
    Alhawari, Mohammad
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,