Investigation of iohexol degradation kinetics by using heat-activated persulfate

被引:74
|
作者
Hu, Chen-Yan [1 ,2 ]
Hou, Yuan-Zhang [1 ]
Lin, Yi-Li [3 ]
Deng, Yan-Guo [1 ]
Hua, Shuang-Jing [1 ]
Du, Yi-Fan [1 ]
Chen, Chiu-Wen [4 ]
Wu, Chung-Hsin [5 ]
机构
[1] Shanghai Univ Elect Power, Coll Environm & Chem Engn, Shanghai Engn Res Ctr Energy Saving Heat Exchange, Shanghai 200090, Peoples R China
[2] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China
[3] Natl Kaohsiung Univ Sci & Technol, Dept Safety Hlth & Environm Engn, Kaohsiung 824, Taiwan
[4] Natl Kaohsiung Univ Sci & Technol, Dept Marine Environm Engn, Kaohsiung 81157, Taiwan
[5] Natl Kaohsiung Univ Sci & Technol, Dept Chem & Mat Engn, Kaohsiung 80778, Taiwan
关键词
Iodinated X-ray contrast media (ICM); Heat-activated persulfate; Degradation kinetics; Rate constant; Advanced oxidation process (AOP); Intermediate identification; RAY CONTRAST-MEDIA; DISINFECTION BY-PRODUCTS; AQUEOUS-SOLUTION; OXIDATIVE-DEGRADATION; AGENT IOPROMIDE; TRANSFORMATION; UV/PERSULFATE; IOPAMIDOL; WATER; UV;
D O I
10.1016/j.cej.2019.122403
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, we investigated the degradation kinetics of a commonly used iodinated contrast medium, iohexol, by using heat-activated persulfate. The results indicate that the iohexol concentration can be effectively reduced with a removal percentage higher than 85% despite the long reaction time (2-3 h). The iohexol disappearance fitted well with the pseudo-first-order kinetic model. The persulfate consumption almost reached the maximum value during the initial 5 min of the reaction. Subsequently, persulfate was no longer consumed, which resulted in a decrease in the reaction rate. The pseudo-first-order rate constant of iohexol degradation significantly increased with temperature but decreased with an increase in pH from 5 to 9. The results of the quenching experiments performed using ethanol and tert-butanol indicate that the role of hydroxyl radicals was more important than that of sulfate radicals in iohexol degradation during heat-activated persulfate oxidation. However, without heat activation, persulfate did not react with iohexol. Therefore, the effect of pH on the HO center dot concentration dominated the effect of pH on iohexol degradation. High concentrations of bicarbonate (>= 5 mM), chloride (>= 1 mM), and dissolved natural organic matter (>= 5 mg/L) inhibited the degradation of iohexol due to the consumption of sulfate and hydroxyl radicals. The mineralization percentage was only 3.8% (no considerable improvement) when the temperature was increased to 80 V. The molecular structures of the intermediates contained iodine with molecular weights higher than 377 Da. Moreover, the generation of iodide was detected. The experimental results suggest that special attention should be paid to the risk of the formation of disinfection by-products in the subsequent chlorine disinfection process when treating natural water containing iohexol through heat-activated persulfate oxidation.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Kinetics and pathways of diclofenac degradation by heat-activated persulfate
    Shi, Hongle
    Zhou, Gaofeng
    Liu, Yiqing
    Fu, Yongsheng
    Wang, Hongbin
    Wu, Peng
    RSC ADVANCES, 2019, 9 (54) : 31370 - 31377
  • [2] Degradation of Sulfathiazole by Heat-Activated Persulfate: Kinetics, Degradation Pathways, and Toxicity Assessment
    Wang, Xueli
    Shu, Shuang
    Wang, Yan
    Zeng, Xiaolan
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2025, 151 (05)
  • [3] Heat-activated persulfate oxidative degradation of ofloxacin: Kinetics, mechanisms, and toxicity assessment
    Li, Tingting
    Lu, Song
    Lin, Wenwen
    Ren, Hejun
    Zhou, Rui
    Chemical Engineering Journal, 2022, 433
  • [4] Heat-activated persulfate oxidative degradation of ofloxacin: Kinetics, mechanisms, and toxicity assessment
    Li, Tingting
    Lu, Song
    Lin, Wenwen
    Ren, Hejun
    Zhou, Rui
    CHEMICAL ENGINEERING JOURNAL, 2022, 433
  • [5] Oxidative degradation of atenolol by heat-activated persulfate: Kinetics, degradation pathways and distribution of transformation intermediates
    Miao, Dong
    Peng, Jianbiao
    Zhou, Xiaohuan
    Qian, Li
    Wang, Mengjie
    Zhai, Li
    Gao, Shixiang
    CHEMOSPHERE, 2018, 207 : 174 - 182
  • [6] Waste heat-activated persulfate degradation of dye wastewater
    Wang, Ping
    Yang, Shiying
    Shan, Liang
    Yang, Xin
    Zhang, Wenyi
    Shao, Xueting
    Niu, Rui
    2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [7] Degradation of diuron via heat-activated persulfate oxidation
    Gao, Nai-Yun
    Zhu, Yan-Ping
    Tan, Chao-Qun
    Xiao, Yu-Liang
    Sui, Ming-Hao
    Gao, N.-Y. (gaonaiyun@sina.com), 1600, South China University of Technology (41): : 36 - 42
  • [8] Oxidation of lignin-degradation products by heat-activated persulfate
    Rong Y.
    Shi L.
    Zhang C.
    Zou L.
    Xu Y.
    Zhu J.
    Chen L.
    Xu Y.
    Yong Q.
    Yu S.
    Huagong Xuebao/CIESC Journal, 2016, 67 (06): : 2618 - 2624
  • [9] Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products
    Waldemer, Rachel H.
    Tratnyek, Paul G.
    Johnson, Richard L.
    Nurmi, James T.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (03) : 1010 - 1015
  • [10] Study of the degradation of an organophosphorus pesticide using electrogenerated hydroxyl radicals or heat-activated persulfate
    Aimer, Yassine
    Benali, Omar
    Serrano, Karine Groenen
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 208 : 27 - 33