The pseudo 2-D relaxation model for obtaining T1-T2 relationships from 1-D T1 and T2 measurements of fluid in porous media

被引:2
|
作者
Williamson, Nathan H. [1 ]
Roeding, Magnus [2 ,3 ]
Liu, Huabing [4 ,5 ]
Galvosas, Petrik [4 ]
Miklavcic, Stanley J. [6 ]
Nyden, Magnus [1 ,3 ]
机构
[1] Univ South Australia, Future Ind Inst, Mawson Lakes, SA 5095, Australia
[2] SP Agrifood & Biosci, Frans Perssons Vag 6, S-40229 Gothenburg, Sweden
[3] Univ Coll London, UCL Australia, Sch Energy & Resources, 220 Victoria Sq, Adelaide, SA 5000, Australia
[4] Victoria Univ Wellington, MacDiarmid Inst Adv Mat & Nanotechnol, Sch Chem & Phys Sci, POB 600, Wellington, New Zealand
[5] Limecho Technol Ltd Co, Beijing 102299, Peoples R China
[6] Univ South Australia, Phen & Bioinformat Res Ctr, Sch Informat Technol & Math Sci, Mawson Lakes, SA 5095, Australia
关键词
Relaxation correlation; Lognormal distribution; Inverse-gamma distribution; Magnetic resonance in porous media; Heterogeneity; Multidimensional distribution function; NMR RELAXATION; DISTRIBUTIONS; DIFFUSION; INVERSION;
D O I
10.1016/j.micromeso.2017.05.056
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
NMR spin-lattice (T-1) and spin-spin (T-2) relaxation times and their inter-relation possess information on fluid behaviour in porous media. To elicit this information we utilize the pseudo 2-D relaxation model (P2DRM), which deduces the T-1-T-2 functional relationship from independent 1-D T-1 and T-2 measurements. Through model simulations we show empirically that the P2DRM accurately estimates T-1-T-2 relationships even when the marginal distributions of the true joint T-1-T-2 distribution are unknown or cannot be modeled. Estimates of the T-1:T-2 ratio for fluid interacting with pore surfaces remain robust when the P2DRM is applied to simulations of rapidly acquired data. Therefore, the P2DRM can be useful in situations where experimental time is limited. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:191 / 194
页数:4
相关论文
共 50 条
  • [1] Obtaining T1-T2 distribution functions from 1-dimensional T1 and T2 measurements: The pseudo 2-D relaxation model
    Williamson, Nathan H.
    Roding, Magnus
    Galvosas, Petrik
    Miklavcic, Stanley J.
    Nyden, Magnus
    JOURNAL OF MAGNETIC RESONANCE, 2016, 269 : 186 - 195
  • [2] Obtaining T1-T2 distribution functions from 1-dimensional T1 and T2 measurements: The pseudo 2-D relaxation model (vol 269, pg 186, 2016)
    Williamson, Nathan H.
    Roding, Magnus
    Galvosas, Petrik
    Miklavcic, Stanley J.
    Nyden, Magnus
    JOURNAL OF MAGNETIC RESONANCE, 2016, 271 : 110 - 110
  • [3] Local T1-T2 distribution measurements in porous media
    Vashaee, S.
    Li, M.
    Newling, B.
    MacMillan, B.
    Marica, F.
    Kwak, H. T.
    Gao, J.
    Al-harbi, A. M.
    Balcom, B. J.
    JOURNAL OF MAGNETIC RESONANCE, 2018, 287 : 113 - 122
  • [4] T1-T2* relaxation correlation measurements
    Enjilela, Razieh
    Guo, Jiangfeng
    MacMillan, Bryce
    Marica, Florea
    Afrough, Armin
    Balcom, Bruce
    JOURNAL OF MAGNETIC RESONANCE, 2021, 326
  • [5] T1 AND T2 FOR ORBACH RELAXATION PROCESSES
    CULVAHOUSE, JW
    RICHARDS, PM
    PHYSICAL REVIEW, 1969, 178 (02): : 485 - +
  • [6] T1 AND T2 FOR STOCHASTIC RELAXATION MODELS
    SKINNER, JL
    SEVIAN, H
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1989, 197 : 149 - PHYS
  • [7] Magnetic resonance T1-T2* and T1ρ-T2* relaxation correlation measurements in solid-like materials with non-exponential decays
    Guo, Jiangfeng
    MacMillan, Bryce
    Zamiri, Mohammad Sadegh
    Balcom, Bruce J.
    JOURNAL OF MAGNETIC RESONANCE, 2021, 328
  • [8] RELAXATION TIMES T1 AND T2 IN ANTHRACITE
    GARIFIANOV, NS
    KOZYREV, BM
    SOVIET PHYSICS JETP-USSR, 1957, 3 (06): : 952 - 952
  • [9] Numerical simulation of (T2, T1) 2D NMR and fluid responses
    Mao-Jin Tan
    You-Long Zou
    Jin-Yan Zhang
    Xin Zhao
    Applied Geophysics, 2012, 9 : 401 - 413
  • [10] MEASUREMENTS OF T1 AND T2 RELAXATION CROSS-SECTIONS FOR HDO
    WILLIAMS, JR
    CASLETON, KH
    KUKOLICH, SG
    JOURNAL OF CHEMICAL PHYSICS, 1977, 66 (03): : 902 - 904