STEINER SYMMETRY IN THE MINIMIZATION OF THE FIRST EIGENVALUE IN PROBLEMS INVOLVING THE p-LAPLACIAN

被引:9
|
作者
Anedda, Claudia [1 ]
Cuccu, Fabrizio [1 ]
机构
[1] Univ Cagliari, Math & Comp Sci Dept, Via Osped 72, I-09124 Cagliari, Italy
关键词
Eigenvalue problem; minimization; Steiner symmetry; OPTIMIZATION; REGULARITY;
D O I
10.1090/proc/12972
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega subset of R-N be an open bounded connected set. We consider the eigenvalue problem -Delta(p)u, = lambda rho vertical bar u vertical bar(p-2)u in Omega with homogeneous Dirichlet boundary condition, where Delta(p) is the rho-Laplacian operator and rho is an arbitrary function that takes only two given values 0 < alpha < beta and that is subject to the constraint integral(Omega)rho dx = alpha gamma + beta(vertical bar Omega vertical bar-gamma) for a fixed 0 < gamma < vertical bar Omega vertical bar. The optimization of the map rho -> lambda(1)(rho), where lambda(1) is the first eigenvalue, has been studied by Cuccu, Emamizadeh and Porru. In this paper we consider a Steiner symmetric domain Omega and we show that the minimizers inherit the same symmetry.
引用
收藏
页码:3431 / 3440
页数:10
相关论文
共 50 条
  • [1] OPTIMIZATION OF THE FIRST EIGENVALUE IN PROBLEMS INVOLVING THE p-LAPLACIAN
    Cuccu, Fabrizio
    Emamizadeh, Behrouz
    Porru, Giovanni
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (05) : 1677 - 1687
  • [2] MULTIPLICITY RESULTS FOR DOUBLE EIGENVALUE PROBLEMS INVOLVING THE p-LAPLACIAN
    Lisei, Hannelore
    Morosanu, Gheorghe
    Varga, Csaba
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (03): : 1095 - 1110
  • [3] Eigenvalue problems for the p-Laplacian
    Lê, A
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (05) : 1057 - 1099
  • [4] SOME REMARKS ON THE OPTIMIZATION OF EIGENVALUE PROBLEMS INVOLVING THE p-LAPLACIAN
    Pielichowski, Waclaw
    [J]. OPUSCULA MATHEMATICA, 2008, 28 (04) : 561 - 566
  • [5] Minimization of the p-Laplacian first eigenvalue for a two-phase material
    Casado-Diaz, Juan
    Conca, Carlos
    Vasquez-Varas, Donato
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 399
  • [6] On some geometrical eigenvalue inverse problems involving the p-Laplacian operator
    Chakib, Abdelkrim
    Khalil, Ibrahim
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (06):
  • [7] Optimal shapes for the first Dirichlet eigenvalue of the p-Laplacian and dihedral symmetry
    Chorwadwala, Anisa M. H.
    Ghosh, Mrityunjoy
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 508 (02)
  • [8] THE DUAL EIGENVALUE PROBLEMS FOR p-LAPLACIAN
    Cheng, Y. -H.
    Lian, W. -C.
    Wang, W. -C.
    [J]. ACTA MATHEMATICA HUNGARICA, 2014, 142 (01) : 132 - 151
  • [9] The dual eigenvalue problems for p-Laplacian
    Yan-Hsiou Cheng
    Wei-Cheng Lian
    Wei-Chuan Wang
    [J]. Acta Mathematica Hungarica, 2014, 142 : 132 - 151
  • [10] LINKED EIGENVALUE PROBLEMS FOR THE P-LAPLACIAN
    BINDING, PA
    HUANG, YX
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 : 1023 - 1036