Composite entire functions with no unbounded Fatou components

被引:7
|
作者
Singh, Anand P. [1 ]
机构
[1] Univ Jammu, Dept Math, Jammu 180006, India
关键词
entire functions; Fatou components; fabry gaps;
D O I
10.1016/j.jmaa.2007.02.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L be the set of all entire functions f such that for given is an element of > 0, log L(r, f) > (1- is an element of) log M(r, f) for all r outside a set of logarithmic density zero. Let F = U-K >= (1) F-K where FK is the set of all transcendental entire functions f such that log log M(r, f) >= (log r) 1/K. If h = f(N) o f(N-1) o... o f(1) where f(i) is an element of F boolean AND L (i = 1,..., N), then it is shown that h has no unbounded Fatou component. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:907 / 914
页数:8
相关论文
共 50 条