On congruences for q-analogues of ballot numbers

被引:0
|
作者
Koparal, Sibel [1 ]
机构
[1] Kocaeli Univ, Dept Math, Fac Sci & Arts, Kocaeli, Turkey
关键词
Congruence; q-binomial coefficient; cyclotomic polynomial; ballot number;
D O I
10.3906/mat-1905-88
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we examine some congruences with q-analogues of ballot numbers. For example, for n > 1 and d = 0, 1, ..., n - 1, Sigma(n-d)(k=1) q(k) B-k,d(q) (math) -2 + (-1)(n-d) (n - d +1/3) q(-1/3(n-d/2)) - (n - d - 1/3) q(d+1-1/3(n-d-2/2)) (mod Phi(n)(q)), with the Legendre symbol (./3), the q-analogue of ballot number B-n,d(q) and the nth cyclotomic polynomial Phi(n) (q).
引用
收藏
页码:2642 / 2648
页数:7
相关论文
共 50 条
  • [1] Q-analogues of convolutions of Fibonacci numbers
    Remmel, Jeffrey B.
    Tiefenbruck, Janine LoBue
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 64 : 166 - 193
  • [2] q-Analogues of some supercongruences related to Euler numbers
    Guo, Victor J. W.
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2022, 28 (01) : 58 - 72
  • [3] On two kinds of q-analogues of generalized Stirling numbers
    Xu, Aimin
    Tang, Peipei
    [J]. RAMANUJAN JOURNAL, 2017, 43 (02): : 371 - 381
  • [4] The median Genocchi numbers, q-analogues and continued fractions
    Feigin, Evgeny
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (08) : 1913 - 1918
  • [5] On two kinds of q-analogues of generalized Stirling numbers
    Aimin Xu
    Peipei Tang
    [J]. The Ramanujan Journal, 2017, 43 : 371 - 381
  • [6] Two q-Analogues of Poly-Stirling Numbers
    Miceli, Brian K.
    [J]. JOURNAL OF INTEGER SEQUENCES, 2011, 14 (09)
  • [7] A Study on q-Analogues of Catalan-Daehee Numbers and Polynomials
    Ma, Yuankui
    Kim, Taekyun
    Kim, Dae
    Lee, Hyunseok
    [J]. FILOMAT, 2022, 36 (05) : 1499 - 1506
  • [8] The translated Whitney-Lah numbers: generalizations and q-analogues
    Mangontarum, Mahid M.
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2020, 26 (04) : 80 - 92
  • [9] Statistical Distributions and q-Analogues of k-Fibonacci Numbers
    Goyt, Adam M.
    Keller, Brady L.
    Rue, Jonathan E.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (01):
  • [10] SOME INTERESTING CONGRUENCES FOR BALLOT NUMBERS
    Omur, Nese
    Koparal, Sibel
    [J]. MISKOLC MATHEMATICAL NOTES, 2018, 19 (02) : 1079 - 1094