Parameter identification of chaotic systems using improved differential evolution algorithm

被引:89
|
作者
Ho, Wen-Hsien [2 ]
Chou, Jyh-Horng [1 ]
Guo, Ching-Yi [1 ]
机构
[1] Natl Kaohsiung First Univ Sci & Technol, Inst Syst Informat & Control, Kaohsiung 824, Taiwan
[2] Kaohsiung Med Univ, Dept Med Informat Management, Kaohsiung 807, Taiwan
关键词
Differential evolution algorithm; Taguchi sliding level method; Chaotic systems; ADAPTIVE SYNCHRONIZATION; LU SYSTEMS; OPTIMIZATION; ROSSLER; DESIGN; CHEN;
D O I
10.1007/s11071-009-9629-2
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, an improved differential evolution algorithm, named the Taguchi-sliding-based differential evolution algorithm (TSBDEA), is proposed to solve the problem of parameter identification for Chen, Lu and Rossler chaotic systems. The TSBDEA, a powerful global numerical optimization method, combines the differential evolution algorithm (DEA) with the Taguchi-sliding-level method (TSLM). The TSLM is used as the crossover operation of the DEA. Then, the systematic reasoning ability of the TSLM is provided to select the better offspring to achieve the crossover, and consequently enhance the DEA. Therefore, the TSBDEA can be more robust, statistically sound, and quickly convergent. Three illustrative examples of parameter identification for Chen, Lu and Rossler chaotic systems are given to demonstrate the applicability of the proposed TSBDEA, and the computational experimental results show that the proposed TSBDEA not only can find optimal or close-to-optimal solutions but also can obtain both better and more robust results than the DEA.
引用
收藏
页码:29 / 41
页数:13
相关论文
共 50 条
  • [1] Parameter identification of chaotic systems using improved differential evolution algorithm
    Wen-Hsien Ho
    Jyh-Horng Chou
    Ching-Yi Guo
    [J]. Nonlinear Dynamics, 2010, 61 : 29 - 41
  • [2] An Alternate Iterative Differential Evolution Algorithm for Parameter Identification of Chaotic Systems
    Xiang, Wanli
    Meng, Xuelei
    An, Meiqing
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
  • [3] Application of Improved Differential Evolution Approach on Parameter Identification of Chen and Lu Chaotic Systems
    Ho, Wen-Hsien
    Chen, Shinn-Horng
    Chou, Jyh-Horng
    Liu, Tung-Kuan
    Jean, Ming-Der
    Li, Cheng-Ming
    [J]. PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL I, 2009, : 593 - +
  • [4] Parameter identification of chaotic systems using an improved artificial bee colony algorithm
    Zhang, Dongli
    Tang, Yinggan
    [J]. 2017 10TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2017, : 471 - 475
  • [5] Parameter identification for discrete memristive chaotic map using adaptive differential evolution algorithm
    Peng, Yuexi
    He, Shaobo
    Sun, Kehui
    [J]. NONLINEAR DYNAMICS, 2022, 107 (01) : 1263 - 1275
  • [6] Parameter identification for discrete memristive chaotic map using adaptive differential evolution algorithm
    Yuexi Peng
    Shaobo He
    Kehui Sun
    [J]. Nonlinear Dynamics, 2022, 107 : 1263 - 1275
  • [7] Parameter estimation for chaotic systems based on hybrid differential evolution algorithm
    Wang Jun-Yan
    Huang De-Xian
    [J]. ACTA PHYSICA SINICA, 2008, 57 (05) : 2755 - 2760
  • [8] Differential evolution algorithm-based parameter estimation for chaotic systems
    Peng, Bo
    Liu, Bo
    Zhang, Fu-Yi
    Wang, Ling
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 39 (05) : 2110 - 2118
  • [9] Solving Parameter Identification Problem of Nonlinear Systems Using Differential Evolution Algorithm
    Wang, Ke
    Wang, Xiaodong
    Wang, Jinshan
    Jiang, Minlan
    Lv, Ganyun
    Feng, Genliang
    Xu, Xiuling
    [J]. 2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL I, PROCEEDINGS, 2008, : 687 - 691
  • [10] Parameter identification of chaotic systems by hybrid Nelder-Mead simplex search and differential evolution algorithm
    Wang, Ling
    Xu, Ye
    Li, Lingpo
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) : 3238 - 3245