The skein polynomial;
HOMFLY polynomial;
Jones polynomial;
Alexander-Conway polynomial;
skein relations;
POTENTIAL FUNCTION;
KNOTS;
INVARIANT;
D O I:
10.1142/S0218216517420032
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We give characterizations of the skein polynomial for links (as well as Jones and Alexander-Conway polynomials derivable from it), avoiding the usual "smoothing of a crossing" move. As by-products, we have characterizations of these polynomials for knots and for links with any given number of components.
机构:
Univ Illinois, Dept Math Stat & Comp Sci, 851 South Morgan St, Chicago, IL 60607 USA
Novosibirsk State Univ, Dept Mech & Math, Novosibirsk, RussiaUniv Illinois, Dept Math Stat & Comp Sci, 851 South Morgan St, Chicago, IL 60607 USA
Kauffman, Louis H.
Lambropoulou, Sofia
论文数: 0引用数: 0
h-index: 0
机构:
Natl Tech Univ Athens, Dept Math, Zografou Campus, GR-15780 Athens, GreeceUniv Illinois, Dept Math Stat & Comp Sci, 851 South Morgan St, Chicago, IL 60607 USA
机构:
Univ Bourgogne, Inst Math Bourgogne, CNRS, UMR 5584, F-21078 Dijon, FranceUniv Bourgogne, Inst Math Bourgogne, CNRS, UMR 5584, F-21078 Dijon, France
Paris, Luis
TOPOLOGY OF ALGEBRAIC VARIETIES AND SINGULARITIES,
2011,
538
: 265
-
276