Intermittency and infinite variance: the case of integrated supOU processes

被引:1
|
作者
Grahovac, Danijel [1 ]
Leonenko, Nikolai N. [2 ]
Taqqu, Murad S. [3 ]
机构
[1] Univ Osijek, Dept Math, Osijek, Croatia
[2] Cardiff Univ, Sch Math, Cardiff, Wales
[3] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
来源
基金
澳大利亚研究理事会;
关键词
supOU processes; Ornstein-Uhlenbeck process; absolute moments; limit theorems; infinite variance; UHLENBECK; SUPERPOSITIONS; MOMENT;
D O I
10.1214/21-EJP623
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
SupOU processes are superpositions of Ornstein-Uhlenbeck type processes with a random intensity parameter. They are stationary processes whose marginal distribution and dependence structure can be specified independently. Integrated supOU processes have then stationary increments and satisfy central and non-central limit theorems. Their moments, however, can display an unusual behavior known as "intermittency". We show here that intermittency can also appear when the processes have a heavy tailed marginal distribution and, in particular, an infinite variance.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] The Multifaceted Behavior of Integrated supOU Processes: The Infinite Variance Case
    Danijel Grahovac
    Nikolai N. Leonenko
    Murad S. Taqqu
    [J]. Journal of Theoretical Probability, 2020, 33 : 1801 - 1831
  • [2] The Multifaceted Behavior of Integrated supOU Processes: The Infinite Variance Case
    Grahovac, Danijel
    Leonenko, Nikolai N.
    Taqqu, Murad S.
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (04) : 1801 - 1831
  • [3] Limit theorems, scaling of moments and intermittency for integrated finite variance supOU processes
    Grahovac, Danijel
    Leonenko, Nikolai N.
    Taqqu, Murad S.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (12) : 5113 - 5150
  • [4] Extremes of supOU processes
    Fasen, Vicky
    Klueppelberg, Claudia
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2007, 2 : 339 - +
  • [5] MULTIVARIATE SUPOU PROCESSES
    Barndorff-Nielsen, Ole Eiler
    Stelzer, Robert
    [J]. ANNALS OF APPLIED PROBABILITY, 2011, 21 (01): : 140 - 182
  • [6] The integrated periodogram for long-memory processes with finite or infinite variance
    Kokoszka, P
    Mikosch, T
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 66 (01) : 55 - 78
  • [7] AUTOREGRESSIVE PROCESSES WITH INFINITE VARIANCE
    HANNAN, EJ
    KANTER, M
    [J]. JOURNAL OF APPLIED PROBABILITY, 1977, 14 (02) : 411 - 415
  • [8] Weak convergence of the function-indexed integrated periodogram for infinite variance processes
    Can, Sami Umut
    Mikosch, Thomas
    Samorodnitsky, Gennady
    [J]. BERNOULLI, 2010, 16 (04) : 995 - 1015
  • [9] ON STOCHASTIC APPROXIMATION PROCESSES WITH INFINITE VARIANCE
    KRASULIN.TP
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1969, 14 (03): : 522 - &
  • [10] Cointegrated processes with infinite variance innovations
    Paulauskas, V
    Rachev, ST
    [J]. ANNALS OF APPLIED PROBABILITY, 1998, 8 (03): : 775 - 792