Geosynthetic-reinforced pile-supported embankments-3D discrete numerical analyses of the interaction and mobilization mechanisms

被引:30
|
作者
Pham, Tuan A. [1 ,2 ]
Tran, Quoc-Anh [3 ]
Villard, Pascal [4 ]
Dias, Daniel [4 ,5 ,6 ]
机构
[1] Heriot Watt Univ, Sch Energy Geosci Infrastruct & Soc, Edinburgh, Midlothian, Scotland
[2] Univ Tokyo, Dept Civil Engn, Tokyo, Japan
[3] Norwegian Univ Sci & Technol, Dept Civil & Environm Engn, Trondheim, Norway
[4] Univ Grenoble Alpes, 3SR, Grenoble INP, CNRS, F-38000 Grenoble, France
[5] Antea Grp, Antony, France
[6] Hefei Univ Technol, Sch Automot & Transportat Engn, Hefei, Peoples R China
关键词
Piled embankment; Geosynthetic; Numerical analysis; Soil arching; Soil-structure interaction; Load transfer mechanism; Discrete element model; Design methods; LOAD-TRANSFER MECHANISMS; FINITE-ELEMENT; SOFT SOIL; PERFORMANCE; MODEL; IMPROVEMENT; COLUMNS; DESIGN; TESTS;
D O I
10.1016/j.engstruct.2021.112337
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Three-dimensional numerical analyses using the discrete element method are conducted to investigate several fundamental aspects related to soil-structure interaction and mobilization mechanisms in the geosyntheticreinforced and pile-supported embankments. The contributions of the soil arching, tensioned membrane effect, friction interaction, subsoil support, and punching failure are investigated. The results indicated that the inclusion of the geosynthetic enhances the stress transfer from the subsoil to piles due to the tensioned membrane action, and the stress distribution is more uniform as compared to piled embankment without geosynthetic. However, the tension distribution in geosynthetic is not uniform and the maximum tension occurs near the pile edge. Numerical results also proved that the subsoil provides substantial support and reduces the reinforcement tension while shear stresses are mobilized along the upper and lower sides of soil-geosynthetic interfaces. These mechanisms should be considered in theoretical models to produce a more realistic approach. Finally, ten available design methods are reviewed and compared to the numerical results to assess the performance of analytical models. The results showed that the design method of Pham, CUR 226 design guideline, and EBGEO design standard agree well with the numerical results and are generally better than the results of all other methods.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Discrete element analysis of geosynthetic-reinforced pile-supported embankments
    Wang, Kangyu
    Cao, Jun
    Ye, Jiahuan
    Qiu, Ziliang
    Wang, Xinquan
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 449
  • [2] 3D numerical study of the performance of geosynthetic-reinforced and pile-supported embankments
    Pham, Tuan A.
    Dias, Daniel
    SOILS AND FOUNDATIONS, 2021, 61 (05) : 1319 - 1342
  • [3] Probabilistic analysis of geosynthetic-reinforced and pile-supported embankments
    Guo, Xiangfeng
    Pham, Tuan A.
    Dias, Daniel
    COMPUTERS AND GEOTECHNICS, 2022, 142
  • [4] Geosynthetic-reinforced pile-supported embankments: state of the art
    van Eekelen, S. J. M.
    Han, J.
    GEOSYNTHETICS INTERNATIONAL, 2020, 27 (02) : 112 - 141
  • [5] Mechanical Performance of Geosynthetic-Reinforced Pile-Supported Embankments
    Sun, Ling
    Zheng, Jun-Jie
    Zhang, Jun
    Ma, Qiang
    ADVANCED MANUFACTURING TECHNOLOGY, PTS 1, 2, 2011, 156-157 : 1696 - 1701
  • [6] Geosynthetic-reinforced and pile-supported embankments: theoretical discussion of finite difference numerical analyses results
    Mangraviti, Viviana
    Flessati, Luca
    di Prisco, Claudio
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2023, 27 (15) : 4337 - 4363
  • [7] Analysis of Load Transfer in Geosynthetic-Reinforced Pile-Supported Embankments
    Yan, Muhan
    Song, Xuguo
    Xiao, Hong
    Guo, Shuaijie
    Zhang, Haiyang
    Chango, Ishola Valere Loic
    2022 16TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP2022), VOL 1, 2022, : 354 - 358
  • [8] Centrifuge Modeling Investigation of Geosynthetic-Reinforced and Pile-Supported Embankments
    Jiang, Yanbin
    Li, Shi-Tong
    He, Ning
    Xu, Binhua
    Fan, Wenhu
    INTERNATIONAL JOURNAL OF GEOMECHANICS, 2024, 24 (08)
  • [9] Reinforcement load in geosynthetic-reinforced pile-supported model embankments
    Liu, Chengyu
    Shan, Yao
    Wang, Binglong
    Zhou, Shunhua
    Wang, Changdan
    GEOTEXTILES AND GEOMEMBRANES, 2022, 50 (06) : 1135 - 1146
  • [10] Investigation on Load Transfer in Geosynthetic-Reinforced Pile-Supported Embankments
    Yan, Muhan
    Guo, Shuaijie
    Zhang, Haiyang
    Song, Xuguo
    Xiao, Hong
    INDIAN GEOTECHNICAL JOURNAL, 2025, 55 (01) : 161 - 175