DPSS: Dynamic Parameter Selection for Outlier Detection on Data Streams

被引:0
|
作者
Zhang, Ruyi [1 ]
Wang, Yijie [1 ]
Zhou, Haifang [1 ]
Li, Bin [1 ]
Xu, Hongzuo [1 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Sci & Technol Parallel & Distributed Proc Lab, Changsha, Peoples R China
基金
国家教育部科学基金资助; 中国国家自然科学基金;
关键词
Parameter Selection; Data Stream; Outlier Detection; Bayesian optimization; ANOMALY DETECTION;
D O I
10.1109/ICPADS56603.2022.00122
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Outlier detection on data streams identifies unusual states to sense and alarm potential risks and faults of the target systems in both the cyber and physical world. As different parameter settings of machine learning algorithms can result in dramatically different performance, automatic parameter selection is also of great importance in deploying outlier detection algorithms in data streams. However, current canonical parameter selection methods suffer from two key challenges: (i) Data streams generally evolve over time, but these existing methods use a fixed training set, which fails to handle this evolving environment and often results in suboptimal parameter recommendations; (ii) The stream is infinite, and thus any parameter selection method taking the entire stream as input is infeasible. In light of these limitations, this paper introduces a Dynamic Parameter Selection method for outlier detection on data Streams (DPSS for short). DPSS uses Gaussian process regression to model the relationship between parameters and detecting performance and uses Bayesian optimization to explore the optimal parameter setting. For each new subsequence, DPSS updates the recommended parameter setting to suit the evolving characteristics. Besides, DPSS only uses historical calculations to guide the parameter setting sampling and adjust the Gaussian process regression results. DPSS can be employed as an auxiliary plug-in tool to improve the detection performance of outlier detection methods. Extensive experiments show that our method can significantly improve the F-score of outlier detectors in data streams compared to its counterparts and obtains more superior parameter selection performance than other state-ofthe-art parameter selection approaches. DPSS also achieves better time and memory efficiency compared to competitors.
引用
收藏
页码:908 / 915
页数:8
相关论文
共 50 条
  • [1] Online Outlier Detection for Data Streams
    Sadik, Shiblee
    Gruenwald, Le
    [J]. PROCEEDINGS OF THE 15TH INTERNATIONAL DATABASE ENGINEERING & APPLICATIONS SYMPOSIUM (IDEAS '11), 2011, : 88 - 96
  • [2] Outlier Detection on Uncertain Data Streams
    Zhu B.
    Zhong Y.
    Wang X.
    Bai M.
    [J]. Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2020, 47 (02): : 134 - 140
  • [3] Adaptive Threshold for Outlier Detection on Data Streams
    Clark, James P.
    Liu, Zhen
    Japkowicz, Nathalie
    [J]. 2018 IEEE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2018, : 41 - 49
  • [4] A Survey of Outlier Detection Algorithms for Data Streams
    Tamboli, Jinita
    Shukla, Madhu
    [J]. PROCEEDINGS OF THE 10TH INDIACOM - 2016 3RD INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT, 2016, : 3535 - 3540
  • [5] Outlier and anomaly pattern detection on data streams
    Cheong Hee Park
    [J]. The Journal of Supercomputing, 2019, 75 : 6118 - 6128
  • [6] Outlier and anomaly pattern detection on data streams
    Park, Cheong Hee
    [J]. JOURNAL OF SUPERCOMPUTING, 2019, 75 (09): : 6118 - 6128
  • [7] Attribute Outlier Detection over Data Streams
    Cao, Hui
    Zhou, Yongluan
    Shou, Lidan
    Chen, Gang
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PT II, PROCEEDINGS, 2010, 5982 : 216 - +
  • [8] Trajectory Outlier Detection on Trajectory Data Streams
    Cao, Keyan
    Liu, Yefan
    Meng, Gongjie
    Liu, Haoli
    Miao, Anchen
    Xu, Jingke
    [J]. IEEE Access, 2020, 8 : 34187 - 34196
  • [9] Trajectory Outlier Detection on Trajectory Data Streams
    Cao, Keyan
    Liu, Yefan
    Meng, Gongjie
    Liu, Haoli
    Miao, Anchen
    Xu, Jingke
    [J]. IEEE ACCESS, 2020, 8 : 34187 - 34196
  • [10] Incremental local outlier detection for data streams
    Pokrajac, Dragojub
    Lazarevic, Aleksandar
    Latecki, Longin Jan
    [J]. 2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2, 2007, : 504 - 515