Microsecond fingerprint stimulated Raman spectroscopic imaging by ultrafast tuning and spatial-spectral learning

被引:65
|
作者
Lin, Haonan [1 ,2 ]
Lee, Hyeon Jeong [2 ,3 ,4 ]
Tague, Nathan [1 ]
Lugagne, Jean-Baptiste [1 ]
Zong, Cheng [2 ,3 ]
Deng, Fengyuan [2 ,3 ]
Shin, Jonghyeon [1 ]
Tian, Lei [3 ]
Wong, Wilson [1 ,5 ]
Dunlop, Mary J. [1 ,5 ]
Cheng, Ji-Xin [1 ,2 ,3 ]
机构
[1] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[2] Boston Univ, Photon Ctr, Boston, MA 02215 USA
[3] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[4] Zhejiang Univ, Coll Biomed Engn & Instrument Sci, Hangzhou, Peoples R China
[5] Boston Univ, Biol Design Ctr, Boston, MA 02215 USA
关键词
SCATTERING MICROSCOPY; LIPID-METABOLISM; CHOLESTEROL; SENSITIVITY;
D O I
10.1038/s41467-021-23202-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Label-free vibrational imaging by stimulated Raman scattering (SRS) provides unprecedented insight into real-time chemical distributions. Specifically, SRS in the fingerprint region (400-1800cm(-1)) can resolve multiple chemicals in a complex bio-environment. However, due to the intrinsic weak Raman cross-sections and the lack of ultrafast spectral acquisition schemes with high spectral fidelity, SRS in the fingerprint region is not viable for studying living cells or large-scale tissue samples. Here, we report a fingerprint spectroscopic SRS platform that acquires a distortion-free SRS spectrum at 10cm(-1) spectral resolution within 20 mu s using a polygon scanner. Meanwhile, we significantly improve the signal-to-noise ratio by employing a spatial-spectral residual learning network, reaching a level comparable to that with 100 times integration. Collectively, our system enables high-speed vibrational spectroscopic imaging of multiple biomolecules in samples ranging from a single live microbe to a tissue slice. The authors employ a polygon-based ultrafast delay scanner and a deep learning framework for acquiring stimulated Raman scattering spectrum with high spectral and temporal resolution. They demonstrate high-speed imaging and tracking of multiple biomolecules in the fingerprint region.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Microsecond fingerprint stimulated Raman spectroscopic imaging by ultrafast tuning and spatial-spectral learning
    Haonan Lin
    Hyeon Jeong Lee
    Nathan Tague
    Jean-Baptiste Lugagne
    Cheng Zong
    Fengyuan Deng
    Jonghyeon Shin
    Lei Tian
    Wilson Wong
    Mary J. Dunlop
    Ji-Xin Cheng
    Nature Communications, 12
  • [2] Stimulated Raman Spectroscopic Imaging by Microsecond Delay-line Tuning
    Liao, Chien-Sheng
    Huang, Kai-Chih
    Hong, Weili
    Chen, Jing
    Caroline, Karanja
    Eakins, Gregory
    Cheng, Ji-Xin
    2016 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2016,
  • [3] Stimulated Raman spectroscopic imaging by microsecond delay-line tuning
    Liao, Chien-Sheng
    Huang, Kai-Chih
    Hong, Weili
    Chen, Andy J.
    Karanja, Caroline
    Wang, Pu
    Eakins, Gregory
    Cheng, Ji-Xin
    OPTICA, 2016, 3 (12): : 1377 - 1380
  • [4] Stimulated Raman spectral imaging by microsecond delay-line tuning
    Liao, Chien-Sheng
    Huang, Kai-Chih
    Hong, Weili
    Chen, Andy J.
    Karanja, Caroline
    Wang, Pu
    Eakins, Gregory
    Cheng, Ji-Xin
    MULTIPHOTON MICROSCOPY IN THE BIOMEDICAL SCIENCES XVII, 2017, 10069
  • [5] DENOISING OF MR SPECTROSCOPIC IMAGING DATA WITH SPATIAL-SPECTRAL REGULARIZATION
    Hien M. Nguyen
    Haldar, Justin P.
    Do, Minh N.
    Liang, Zhi-Pei
    2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 720 - 723
  • [6] Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy
    Chien-Sheng Liao
    Mikhail N Slipchenko
    Ping Wang
    Junjie Li
    Seung-Young Lee
    Robert A Oglesbee
    Ji-Xin Cheng
    Light: Science & Applications, 2015, 4 : e265 - e265
  • [7] Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy
    Liao, Chien-Sheng
    Slipchenko, Mikhail N.
    Wang, Ping
    Li, Junjie
    Lee, Seung-Young
    Oglesbee, Robert A.
    Cheng, Ji-Xin
    LIGHT-SCIENCE & APPLICATIONS, 2015, 4 : e265 - e265
  • [8] Volume holographic spatial-spectral imaging systems
    Vyas, Sunil
    Chia, Yu-Hsin
    Luo, Yuan
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2019, 36 (02) : A47 - A58
  • [9] Spatial-spectral Encoded Compressive Hyperspectral Imaging
    Lin, Xing
    Liu, Yebin
    Wu, Jiamin
    Dai, Qionghai
    ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (06):
  • [10] MULTITASK LEARNING FOR SPATIAL-SPECTRAL HYPERSPECTRAL UNMIXING
    Palsson, Burkni
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 564 - 567