Abstract and Concrete Decision Graphs for Choosing Extensions of Argumentation Frameworks

被引:2
|
作者
Dauphin, Jeremie [1 ]
Cramer, Marcos [1 ]
van der Torre, Leendert [1 ]
机构
[1] Univ Luxembourg, Esch Sur Alzette, Luxembourg
基金
欧盟地平线“2020”;
关键词
abstract argumentation; argumentation semantics; extension selection;
D O I
10.3233/978-1-61499-906-5-437
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most argumentation semantics allow for multiple extensions, which raises the question of how to choose among extensions. We propose to study this question as a decision problem. Inspired by decision trees commonly used in economics, we introduce the notion of a decision graph for deciding between the multiple extensions of a given AF in a given semantics. We distinguish between abstract decision graphs and concrete instantiations thereof. Inspired by the principle-based approach to argumentation, we formulate two principles that mappings from argumentation frameworks to decision graphs should satisfy, the principles of decision-graph directionality and that of directional decision-making. We then propose a concrete instantiation of decision graphs, which satisfies one of these principles. Finally, we discuss the potential for further research based on this novel methodology.
引用
收藏
页码:437 / 444
页数:8
相关论文
共 50 条
  • [1] On the Complexity of Enumerating the Extensions of Abstract Argumentation Frameworks
    Kroell, Markus
    Pichler, Reinhard
    Woltran, Stefan
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1145 - 1152
  • [2] Computing Grounded Extensions Of Abstract Argumentation Frameworks
    Nofal, Samer
    Atkinson, Katie
    Dunne, Paul E.
    [J]. COMPUTER JOURNAL, 2021, 64 (01): : 54 - 63
  • [3] A tool for merging extensions of abstract argumentation frameworks
    Delobelle, Jerome
    Mailly, Jean-Guy
    [J]. ARGUMENT & COMPUTATION, 2022, 13 (03) : 361 - 368
  • [4] On Scaling the Enumeration of the Preferred Extensions of Abstract Argumentation Frameworks
    Alfano, Gianvincenzo
    Greco, Sergio
    Parisi, Francesco
    [J]. SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING, 2019, : 1147 - 1153
  • [5] On efficiently estimating the probability of extensions in abstract argumentation frameworks
    Fazzinga, Bettina
    Flesca, Sergio
    Parisi, Francesco
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2016, 69 : 106 - 132
  • [6] Efficient Computation of Deterministic Extensions for Dynamic Abstract Argumentation Frameworks
    Greco, Sergio
    Parisi, Francesco
    [J]. ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 1668 - 1669
  • [7] On the Computation of Top-k Extensions in Abstract Argumentation Frameworks
    Jabbour, Said
    Raddaoui, Badran
    Sais, Lakhdar
    Salhi, Yakoub
    [J]. ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 913 - 920
  • [8] Representing and Comparing Large Sets of Extensions of Abstract Argumentation Frameworks
    Rodrigues, Odinaldo
    [J]. SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING, 2019, : 1154 - 1161
  • [9] Efficient Computation of Extensions for Dynamic Abstract Argumentation Frameworks: An Incremental Approach
    Alfano, Gianvincenzo
    Greco, Sergio
    Parisi, Francesco
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 49 - 55
  • [10] A New Labelling Algorithm for Generating Preferred Extensions of Abstract Argumentation Frameworks
    Nofal, Samer
    Atkinson, Katie
    Dunne, Paul E.
    Hababeh, Ismail
    [J]. PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS), VOL 1, 2019, : 340 - 348